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The technology underlying text search engines has advanced dramatically in the past decade. The develop-

ment of a family of new index representations has led to a wide range of innovations in index storage, index

construction, and query evaluation. While some of these developments have been consolidated in textbooks,

many specific techniques are not widely known or the textbook descriptions are out of date. In this tutorial,

we introduce the key techniques in the area, describing both a core implementation and how the core can

be enhanced through a range of extensions. We conclude with a comprehensive bibliography of text indexing

literature.
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1. INTRODUCTION

Text search is a key technology. Search engines that index the Web provide a breadth
and ease of access to information that was inconceivable only a decade ago. Text search
has also grown in importance at the other end of the size spectrum. For example, the
help services built into operating systems rely on efficient text search, and desktop
search systems help users locate files on their personal computers.
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2 J. Zobel and A. Moffat

Search engines are structurally similar to database systems. Documents are stored
in a repository, and an index is maintained. Queries are evaluated by processing the
index to identify matches which are then returned to the user. However, there are also
many differences. Database systems must contend with arbitrarily complex queries,
whereas the vast majority of queries to search engines are lists of terms and phrases.
In a database system, a match is a record that meets a specified logical condition; in a
search engine, a match is a document that is appropriate to the query according to sta-
tistical heuristics and may not even contain all of the query terms. Database systems
return all matching records; search engines return a fixed number of matches, which are
ranked by their statistical similarity. Database systems assign a unique access key to
each record and allow searching on that key; for querying on a Web collection, there may
be many millions of documents with nonzero similarity to a query. Thus, while search
engines do not have the costs associated with operations such as relational join, there
are significant obstacles to fast response, that is, a query term may occur in a large num-
ber of the documents, and each document typically contains a large number of terms.

The challenges presented by text search have led to the development of a wide range
of algorithms and data structures. These include representations for text indexes, index
construction techniques, and algorithms for evaluation of text queries. Indexes based
on these techniques are crucial to the rapid response provided by the major Web search
engines. Through the use of compression and careful organization, the space needed
for indexes and the time and disk traffic required during query evaluation are reduced
to a small fraction of previous requirements.

In this tutorial, we explain how to implement high-performance text indexing. Rather
than explore all the alternative approaches that have been described (some specula-
tive, some ineffective, and some proven in practice), we describe a simple, effective
solution that has been shown to work well in a range of contexts. This indexing core
includes algorithms for construction of a document-level index and for basic ranked
query evaluation.

Given the indexing core, we then sketch some of the principal refinements that have
been devised. These include index reorganization, phrase querying, distribution, index
maintenance, and, in particular, index compression. The most compelling application
of the indexing techniques described in this tutorial is their use in Web search engines
and so we briefly review search in the context of the Web. In the context of the different
approaches, we identify significant papers and indicate their contribution.

Other research topics in text search include innovations such as metasearch, com-
pression techniques for stored documents, and improvements to fundamental technolo-
gies such as sorting, storing, and searching of sets of strings. Domains of applicability
beyond text include genomic string searching, pattern matching, and proprietary docu-
ment management systems. These developments are of wide practical importance but
are beyond the scope of this tutorial.

This article has a slightly unusual structure. The citations are collected into Sec-
tion 13 which is a critical survey of work in the area. The earlier sections are free of
citations, and reflect our desire to present the material as a tutorial that might be use-
ful for people new to the area. To allow the corresponding citations to be accessed, the
structure within Section 13 of the previous sections. That is, Section 13 can be used as
a “further reading” overview for each topic.

2. TEXT SEARCH AND INFORMATION RETRIEVAL

Search engines are tools for finding the documents in a collection that are good matches
to user queries. Typical kinds of document collection include Web pages, newspaper ar-
ticles, academic publications, company reports, research grant applications, manual
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Inverted Files for Text Search Engines 3

pages, encyclopedias, parliamentary proceedings, bibliographies, historical records,
electronic mail, and court transcripts.

These collections range dramatically in size. The plain text of a complete set of papers
written by a researcher over ten years might occupy 10 megabytes, and the same re-
searcher’s (plain text, non-spam) 10-year email archive might occupy 100 megabytes. A
thousand times bigger, the text of all the books held in a small university library might
occupy around 100 gigabytes. In 2005, the complete text of the Web was probably some
several tens of terabytes.

Collections also vary in the way they change over time. A newswire archive or digital
library might grow only slowly, perhaps by a few thousand documents a day; deletions
are rare. Web collections, in contrast, can be highly dynamic. Fortunately, many of the
same search and storage techniques are useful for these collections.

Text is not the only kind of content that is stored in document collections. Research
papers and newspaper articles include images, email includes attachments, and Web
collections include audio and video formats. The sizes discussed previously are for text
only; the indexing of media other than text is beyond the scope of this tutorial.

Query Modes. In traditional databases, the primary method of searching is by key or
record identifier. Such searching is rare in text databases. Text in some kinds of col-
lections does have structured attributes such as <author> tags and metadata such as
the subject labels used for categorizing books in libraries, but these are only occasion-
ally useful for content-based search and are not as useful as are keys in a relational
database.

The dominant mode of text search is by its content in order to satisfy an information
need. People search in a wide variety of ways. Perhaps the commonest mode of searching
is to issue an initial query, scan a list of suggested answers, and follow pointers to
specific documents. If this approach does not lead to discovery of useful documents, the
user refines or modifies the query and may use advanced querying features such as
restricting the search domain or forcing inclusion or omission of specific query terms.
In this model of searching, an information need is represented by a query, and the user
may issue several queries in pursuit of one information need. Users expect to be able
to match documents according to any of the terms they contain.

Both casual users and professionals make extensive use of search engines but their
typical strategies differ. Casual users generally examine only the first page or so re-
turned by their favorite search engine, while professionals may use a range of search
strategies and tools and are often prepared to scrutinize hundreds of potential answers.
However, the same kinds of retrieval technique works for both types of searcher.

Another contrast with traditional databases is the notion of matching. A record
matches an SQL query if the record satisfies a logical condition. A document matches
an information need if the user perceives it to be relevant. But relevance is inexact, and
a document may be relevant to an information need even though it contains none of
the query terms or irrelevant even though it contains them all. Users are aware that
only some of the matches returned by the system will be relevant and that different
systems can return different matches for the same query. This inexactitude introduces
the notion of effectiveness: informally, a system is effective if a good proportion of the
first r matches returned are relevant. Also, different search mechanisms have different
computational requirements and so measurement of system performance must thus
consider both effectiveness and efficiency.

There are many ways in which effectiveness can be quantified. Two commonly used
measures are precision and recall, respectively the fraction of the retrieved documents
that are relevant and the fraction of relevant documents that are retrieved. There are
many other metrics in use with differing virtues and differing areas of application. In
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Fig. 1. The Keeperdatabase. It consists of six one-line documents.

this tutorial, our focus is on describing indexing techniques that are efficient, and we
do not review the topic of effectiveness. Worth noting, however, is that the research
that led to these efficient indexing techniques included demonstrations that they do
not compromise effectiveness.

With typical search engines, the great majority of information needs are presented
as bag-of-word queries. Many bag-of-word queries are in fact phrases such as proper
names. Some queries have phrases marked up explicitly, in quotes. Another common
approach is to use Boolean operators such as AND, perhaps to restrict answers to a
specific language, or to require that all query terms must be present in an answer.

Example Collections. A sample collection, used as an example through this tutorial, is
shown in Figure 1. In this Keeper database, only document 2 is about a big old house.
But with a simple matching algorithm, the bag-of-words query big old house matches
documents 2 and 3, and perhaps also documents 1 and 4 which contain old, but not the
other terms. The phrase query "big old house" would match only document 2.

Another issue is the parsing method used to extract terms from text. For example,
when HTML documents are being indexed, should the markup tags be indexed? or
terms within tags? And should hyphenated terms be considered as one word or two?
An even more elementary issue is whether to stem and casefold, that is, remove variant
endings from words, and convert to lowercase. Choice of parsing technique has little
impact, however, on indexing. On the other hand, the issue of stopping does affect
the cost of indexing and removal of common words or function words such as the and
furthermore can have a significant effect. Confusingly, in some information retrieval
literature, the task of parsing is known as index term extraction or simply indexing. In
this article, indexing is the task of constructing an index.

Without stemming, but with casefolding, the vocabulary of Keeper is:

and big dark did gown had house in keep keeper keeps light

never night old sleep sleeps the town where

Stemming might reduce the vocabulary to:

and big dark did gown had house in keep light never night old

sleep the town where

with the exact result dependent on the stemming method used. Stopping might then
reduce the Keeper vocabulary to:

big dark gown house keep light night old sleep town

In addition to the example Keeper collection, two hypothetical collections are used to
illustrate efficiency issues. The characteristics of these collections are shown in Table I,
and, while they are not actual data sets, they are based on experience with real text.
Specifically, they are similar to two types of collections provided by the TREC project
run by the United States National Institute for Standards and Technology (NIST) (see
trec.nist.gov). TREC has been a catalyst for research in information retrieval since
1992, and without it, robust measurement of the techniques described in this tutorial
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Table I. Characteristics of Two Hypothetical Text Databases, Used as
Examples in This Tutorial

NewsWire Web

Size (gigabytes) 1 100
Documents 400,000 12,000,000
Word occurrences (without markup) 180,000,000 11,000,000,000
Distinct words (after stemming) . . . , 400,000 16,000,000

per document, totaled 70,000,000 3,500,000,000

would have been difficult or impossible. The last line in the table is the number of
distinct word-document pairs, that is, the number of word occurrences when duplicates
within a document are not counted.

Most of the costs required for additional structures scale more or less linearly for col-
lections larger than a gigabyte. For example, in Web data, new distinct words continue
to occur at a typical rates of about one per 500–1000 word occurrences. Typical query
terms occur in 0.1%–1% of the indexed documents.

Taking all of these factors into account, implementors of search engines must design
their systems to balance a range of technical requirements:

—effective resolution of queries;

—use of features of conventional text, such as query term proximity, that improve
effectiveness;

—use of features of hyperlinked text, such as anchor strings and URL terms, that
improve effectiveness;

—fast resolution of queries;

—minimal use of other resources (disk, memory, bandwidth);

—scaling to large volumes of data;

—change in the set of documents; and

—provision of advanced features such as Boolean restriction and phrase querying.

This tutorial describes techniques for supporting all of these requirements.

Similarity Measures. All current search engines use ranking to identify potential an-
swers. In a ranked query, a statistical similarity heuristic or similarity measure is used
to assess the closeness of each document to the textual query. The underlying principle
is that the higher the similarity score awarded to a document, the greater the estimated
likelihood that a human would judge it to be relevant. The r “most similar according to
the heuristic” documents are returned to the user as suggested answers. To describe the
implementation of text retrieval, we first consider evaluation of bag-of-words queries
in which similarity is determined by simple statistics. In Section 4, we extend these
techniques to phrase queries.

Most similarity measures use some composition of a small number of fundamental
statistical values:

— fd,t , the frequency of term t in document d ;

— fq,t , the frequency of term t in the query;

— ft, the number of documents containing one or more occurrences of term t;

—Ft, the number of occurrences of term t in the collection;

—N, the number of documents in the collection; and

—n, the number of indexed terms in the collection.

These basic values are combined in a way that results in three monotonicity observa-
tions being enforced.
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6 J. Zobel and A. Moffat

(1) Less weight is given to terms that appear in many documents;

(2) More weight is given to terms that appear many times in a document; and

(3) Less weight is given to documents that contain many terms.

The intention is to bias the score towards relevant documents by favoring terms that ap-
pear to be discriminatory and reducing the impact of terms that appear to be randomly
distributed.

A typical older formulation that is effective in practice calculates the cosine of the
angle in n-dimensional space between a query vector 〈wq,t〉 and a document vector
〈wd,t〉. There are many variations of the cosine formulation. An example is:

wq,t = ln

(
1 + N

ft

)
wd,t = 1 + ln fd,t

Wd =
√∑

t
w2

d,t Wq =
√∑

t w2
q,t

Sq,d =
∑

t wd,t · wq,t

Wd · Wq
.

(1)

The term Wq can be neglected as it is a constant for a given query and does not affect
the ordering of documents. Variations on this theme are to avoid use of logarithms, or
replace N by maxt{ ft} in the expression for wq,t, or multiply the query-term weights
wq,t by 1 + ln fq,t when queries are long, or use a different way of combining wq,t and
wd,t, or take Wd to be the length of the document in words or in bytes, and so on.

What all of these variants share is that the quantity wq,t typically cap-
tures the property often described as the inverse document frequency of the
term, or IDF, while wd,t captures the term frequency, or TF, hence the common
description of similarity measures as TF×IDF formulations. Observing that the neg-
ative log of a probability is the information content, the score assigned to a document
can very loosely be interpreted from an entropy-based perspective as being a sum of
information conveyed by the query terms in that document, which maps to the same
ordering as the product of their respective probabilities.

Similarity formulations that are directly grounded in statistical principles have also
proven successful in TREC. The best known of these is the Okapi computation,

wq,t = ln

(
N − ft + 0.5

ft + 0.5

)
· (k3 + 1) · fq,t

k3 + fq,t

wd,t = (k1 + 1) fd,t

Kd + fd,t

Kd = k1

(
(1 − b) + b

Wd

WA

)
(2)

Sq,d =
∑
t∈q

wq,t · wd,t,

in which the values k1 and b are parameters, set to 1.2 and 0.75 respectively; k3 is a
parameter that is set to ∞, so that the expression (k3 +1) · fq,t/

(
k3 + fq,t

)
is assumed to

be equivalent to fq,t; and Wd and WA are the document length and average document
length, in any suitable units.
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Inverted Files for Text Search Engines 7

Fig. 2. Exhaustive computation of cosine similarity between a query q and
every document in a text collection. This approach is suitable only when the
collection is small or is highly dynamic relative to the query rate.

More recent probabilistic approaches are based on language models. There are many
variants; a straightforward language-model formulation is:

wd,t = log

( |d |
|d | + μ

· fd,t

|d | + μ

|d | + μ
· Ft

|C|
)

(3)

Sq,d =
∑
t∈q

fq,t · wd,t,

where |d | (respectively, |C|) is the number of term occurrences in document d (respec-
tively, collection C) and μ is a parameter, typically set to 2500. The left-hand side of
the sum is the observed likelihood of the term in the document, while the right-hand
side modifies this (using Dirichlet smoothing) by combining it with the observed like-
lihood of the term in the collection. Taking the smoothed value as an estimate of the
probability of the term in the document, this formulation is rank equivalent to ordering
documents by the extent to which the query’s entropy in the document’s model differs
from the query’s entropy in the collection as a whole.

In this language-model formulation, the value wd,t is nonzero even if t is not in d ,
presenting difficulties for the term-ordered query evaluation strategies we explain later.
However, this problem can be addressed by transforming it into a rank-equivalent
measure:

Sq,d
rank= |q| · log

(
μ

|d | + μ

)
+

∑
t∈q∧d

(
fq,t · log

(
fd,t

μ
· |C|

Ft
+ 1

))
, (4)

where the term-oriented component log(1+ ( fd,t/μ) · (|C|/Ft)) is zero when t is not in d .
In all of these formulations, documents can score highly even if some of the query

terms are missing. This is a common attribute of similarity heuristics. We do not explore
similarity formulations in detail and take as our brief the need to implement a system
in which any such computation can be efficiently computed.

Given a formulation, ranking a query against a collection of documents is in principle
straightforward: each document is fetched in turn, and the similarity between it and
the query calculated. The documents with the highest similarities can then be returned
to the user. An algorithm for exhaustive ranking using the cosine measure is shown in
Figure 2.

The drawback of this approach is that every document is explicitly considered, but
for typical situations in which r � N , only a tiny fraction of documents are re-
turned as answers. For most documents, the vast majority of similarity values are
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8 J. Zobel and A. Moffat

insignificant. The exhaustive approach does, however, illustrate the main features of
computing a ranking, and, with a simple reorganization, a more efficient computation
can be achieved based on the key observation that, to have a nonzero score, a document
must contain at least one query term.

3. INDEXING AND QUERY EVALUATION

Fast query evaluation makes use of an index: a data structure that maps terms to the
documents that contain them. For example, the index of a book maps a set of selected
terms to page numbers. With an index, query processing can be restricted to documents
that contain at least one of the query terms.

Many different types of index have been described. The most efficient index structure
for text query evaluation is the inverted file: a collection of lists, one per term, recording
the identifiers of the documents containing that term. Other structures are briefly
considered in Section 11, but they are not useful for general-purpose querying.

Baseline Inverted File. An inverted file index consists of two major components. The
search structure or vocabulary stores for each distinct word t,

—a count ft of the documents containing t, and

—a pointer to the start of the corresponding inverted list.

Studies of retrieval effectiveness show that all terms should be indexed, even numbers.
In particular, experience with Web collections shows that any visible component of
a page might reasonably be used as a query term, including elements such as the
tokens in the URL. Even stopwords—which are of questionable value for bag-of-words
queries—have an important role in phrase queries.

The second component of the index is a set of inverted lists where each list stores for
the corresponding word t,

—the identifiers d of documents containing t, represented as ordinal document num-
bers; and

—the associated set of frequencies fd ,t of terms t in document d .

The lists are represented as sequences of 〈d, fd,t〉 pairs. As described, this is a document-
level index in that word positions within documents are not recorded. Together with an
array of Wd values (stored separately), these components provide all the information
required for both Boolean and ranked query evaluation. A complete inverted file for the
Keeper database is shown in Figure 3.

In a complete text database system, there are several other structures, including
the documents themselves and a table that maps ordinal document numbers to disk
locations (or other forms of document locator such as a filename or other key). We do
not explore these structures in this tutorial.

In a simple representation, for the NewsWire data, the total index size would be
approximately 435MB (megabytes) or around 40% of the size of the original data. This
is comprised of 12MB for 400,000 words, pointers, and counts; 1.6MB for 400,000 Wd
values; 280MB for 70,000,000 document identifiers (four bytes each); and 140MB for
70,000,000 document frequencies (two bytes each). For the Web data, the total size is
about 21GB (gigabytes) or just over 20% of the original text. The difference between
these two collections is a consequence of Web pages tending to contain large volumes
of unindexed markup.

An assumption made in these calculations is that each inverted list is stored contigu-
ously. The alternative is that lists are composed of a sequence of blocks that are linked
or indexed in some way. The assumption of contiguity has a range of implications. First,
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Inverted Files for Text Search Engines 9

Fig. 3. Complete document-level inverted file for
the Keeper database. The entry for each term t is
composed of the frequency ft and a list of pairs, each
consisting of a document identifier d and a document
frequency fd,t. Also shown are the Wd values as com-

puted for the cosine measure shown in Equation 1.

it means that a list can be read or written in a single operation. Accessing a sequence
of blocks scattered across a disk would impose significant costs on query evaluation
as the list for a typical query term on the Web data would occupy 100kB (kilobytes) to
1MB, and the inverted list for a common term could be many times this size. Adding
to the difficulties for the great majority of terms, the inverted list is much less than
a kilobyte, placing a severe constraint on feasible size for a fixed-size block. Second,
no additional space is required for next-block pointers. Third, index update procedures
must manage variable-length fragments that vary enormously in size, from tiny to vast;
our experience, however, is that the benefits of contiguity greatly outweigh these costs.

An issue that is considered in detail in Section 8 is how to represent each stored value
such as document numbers and in-document frequencies. The choice of any fixed num-
ber of bits or bytes to represent a value is clearly arbitrary and has potential implica-
tions for scaling (fixed-length values can overflow) and efficiency (inflation in the volume
of data to be managed). Using the methods described later in this article, large gains in
performance are available through the use of compressed representations of indexes.

To facilitate compression, d-gaps are stored rather than straight document identi-
fiers. For example, the sorted sequence of document numbers

7, 18, 19, 22, 23, 25, 63, . . .

can be represented by gaps

7, 11, 1, 3, 1, 2, 38, . . . .
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10 J. Zobel and A. Moffat

Fig. 4. Indexed computation of cosine similarity between a query q and a text
collection.

Fig. 5. Using an inverted file and a set of accumulators to calculate document similarity scores.

While this transformation does not reduce the maximum magnitude of the stored num-
bers, it does reduce the average, providing leverage for the compression techniques
discussed later. Section 8 gives details of mechanisms that can exploit the advantage
that is created by gaps.

Baseline Query Evaluation. Ranking using an inverted file is described in Figure 4
and illustrated in Figure 5. In this algorithm, the query terms are processed one at a
time. Initially each document has a similarity of zero to the query; this is represented
by creating an array A of N partial similarity scores referred to as accumulators, one
for each document d . Then, for each term t, the accumulator Ad for each document d
mentioned in t ’s inverted list is increased by the contribution of t to the similarity of d
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to the query. Once all query terms have been processed, similarity scores Sd are calcu-
lated by dividing each accumulator value by the corresponding value of Wd . Finally, the
r largest similarities are identified, and the corresponding documents returned to the
user.

The cost of ranking via an index is far less than with the exhaustive algorithm
outlined in Figure 2. Given a query of three terms, processing a query against the Web
data involves finding the three terms in the vocabulary; fetching and then processing
three inverted lists of perhaps 100kB to 1MB each; and making two linear passes over
an array of 12,000,000 accumulators. The complete sequence requires well under a
second on current desktop machines.

Nonetheless, the costs are still significant. Disk space is required for the index at
20%–60% of the size of the data for an index of the type shown in Figure 3; memory is
required for an accumulator for each document and for some or all of the vocabulary;
CPU time is required for processing inverted lists and accumulators; and disk traffic
is used to fetch inverted lists. Fortunately, compared to the implementation shown in
Figure 4, all of these costs can be dramatically reduced.

Indexing Word Positions. We have described inverted lists as sequences of index entries,
each a 〈d, fd,t〉 pair. An index of this form is document-level since it indicates whether a
term occurs in a document but does not contain information about precisely where the
term appears. Given that the frequency fd,t represents the number of occurrences of t
in d , it is straightforward to modify each entry to include the fd,t ordinal word positions
p at which t occurs in d and create a word-level inverted list containing pointers of the
form 〈d , fd ,t , p1, . . . , pfd ,t 〉. Note that in this representation positions are word counts,
not byte counts, so that they can be used to determine adjacency.

Word positions can be used in a variety of ways during query evaluation. Section 4
discusses one of these, phrase queries in which the user can request documents with
a sequence rather than bag-of-words. Word positions can also be used in bag-of-word
queries, for example, to prefer documents where the terms are close together or are
close to the beginning of the document. Similarity measures that make use of such
proximity mechanisms have not been particularly successful in experimental settings
but, for simple queries, adjacency and proximity do appear to be of value in Web
retrieval.

If the source document has a hierarchical structure, that structure can be reflected
by a similar hierarchy in the inverted index. For example, a document with a structure
of chapters, sections, and paragraphs might have word locations stored as (c, s, p, w)
tuples coded as a sequence of nested runs of c-gaps, s-gaps, p-gaps, and w-gaps. Such
an index allows within-same-paragraph queries as well as phrase queries, for example,
and with an appropriate representation, is only slightly more expensive to store than
a nonhierarchical index.

Core Ideas. To end this section, we state several key implementation decisions.

—Documents have ordinal identifiers, numbered from one.

—Inverted lists are stored contiguously.

—The vocabulary consists of every term occurring in the documents and is stored in a
simple extensible structure such as a B-tree.

—An inverted list consists of a sequence of pairs of document numbers and in-document
frequencies, potentially augmented by word positions.

—The vocabulary may be preprocessed, by stemming and stopping.

—Ranking involves a set of accumulators and term-by-term processing of inverted lists.
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12 J. Zobel and A. Moffat

This set of choices constitutes a core implementation in that it provides an approach that
is simple to implement and has been used in several public-domain search systems and,
we believe, many proprietary systems. In the following sections, we explore extensions
to the core implementation.

4. PHRASE QUERYING

A small but significant fraction of the queries presented to Web search engines include
an explicit phrase, such as "philip glass" opera or "the great flydini". Users also
often enter phrases without explicit quotes, issuing queries such as Albert Einstein or
San Francisco hotel. Intuitively it is appealing to give high scores to pages in which
terms appear in the same order and pattern as they appear in the query, and low scores
to pages in which the terms are separated.

When phrases are used in Boolean queries, it is clear what is intended—the phrase
itself must exist in matching documents. For example, the Boolean query old "night
keeper" would be evaluated as if it contains two query terms, one of which is a phrase,
and both terms would be required for a document to match.

In a ranked query, a phrase can be treated as an ordinary term, that is, a lexical entity
that occurs in given documents with given frequencies, and contributes to the similarity
score for that document when it does appear. Similarity can therefore be computed in
the usual way, but it is first necessary to use the inverted lists for the terms in the
phrase to construct an inverted list for the phrase itself, using a Boolean intersection
algorithm. A question for information retrieval research (and outside the scope of this
tutorial) is whether this is the best way to use phrases in similarity estimation. A good
question for this tutorial is how to find—in a strictly Boolean sense—the documents in
which a given sequence of words occur together as a phrase since, regardless of how
they are eventually incorporated into a matching or ranking scheme, identification of
phrases is the first step.

An obvious possibility is to use a parser at index construction time that recognizes
phrases that might be queried and to index them as if they were ordinary document
terms. The set of identified phrases would be added to the vocabulary and have their
own inverted lists; users would then be able to query them without any alteration to
query evaluation procedures. However, such indexing is potentially expensive. There
is no obvious mechanism for accurately identifying which phrases might be used in
queries, and the number of candidate phrases is enormous since even the number of
distinct two-word phrases grows far more rapidly than the number of distinct terms.
The hypothetical Web collection shown in Table I could easily contain a billion distinct
two-word pairs.

Three main strategies for Boolean phrase query evaluation have been developed.

—Process phrase queries as Boolean bags-of-words so that the terms can occur any-
where in matching document, then postprocess the retrieved documents to eliminate
false matches.

—Add word positions to some or all of the index entries so that the locations of terms
in documents can be checked during query evaluation.

—Use some form of partial phrase index or word-pair index so that phrase appearances
can be directly identified.

These three strategies can complement each other. However, a pure bag-of-words ap-
proach is unlikely to be satisfactory since the cost of fetching just a few nonmatching
documents could exceed all other costs combined, and, for many phrases, only a tiny
fraction of the documents that contain the query words also contain them as a phrase.
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Phrase Query Evaluation. When only document-level querying is required, inclusion of
positional information in the index not only takes space, but also slows query processing
because of the need to skip over the positional information in each pointer. And, as
discussed in more detail in the following, if bag-of-words ranked queries are to be
supported efficiently, then other index organizations, such as frequency- and impact-
sorted arrangements, need to be considered.

Taken together, these considerations suggest that maintenance of two separate in-
dexes may be attractive, a word-level index for Boolean searching and phrase identifi-
cation, and a document-level impact- or frequency-sorted index for processing ranked
queries. Given that document-level indexes are small, the space overhead of having
multiple indexes is low. Separating the indexes also brings flexibility and allows con-
sideration of index structures designed explicitly for phrases.

Many phrases include common words. The cost of phrase query processing using a
word-level inverted index is then dominated by the cost of fetching and decoding lists
for those words which typically occur at the start of or in the middle of a phrase—
consider "the house in the town", for example. One way of avoiding this problem
would be to neglect certain stop words and index them at the document-level only. For
example, to evaluate the query "the house in the town" processing could proceed by
intersecting the lists for house, and town, looking for positions p of house such that town
is at p + 3. False matches could be eliminated by post-processing, that is, by fetching
candidate documents and examining them directly. The possibility of false matches
could also simply be ignored. However, in some phrase queries, the common words play
an important semantic role and must be included.

Phrase Indexes. It is also possible to build a complete index of two-word phrases using
a hierarchical storage structure to avoid an overly large vocabulary. Experiments show
that such an index occupies around 50% of the size of the source data, that is, perhaps
50GB for the Web collection. The inverted lists for phrases are on average much shorter
than those of the individual words, but there are many more of them, and the vocabulary
is also much bigger.

Using a two-word phrase index, evaluation of the phrase query "the house in the
town" (which matches line three of the Keeper collection) involves processing the in-
verted lists for, say, the phrases "the house", "house in", and "the town". The pair
"in the" is also a phrase but is covered by the others and—making an arbitrary choice
between this phrase and "house in"—its inverted list does not need to be processed.

For phrases composed of rare words, having a phrase index yields little advantage,
as processing savings are offset by the need to access a much larger vocabulary. A
successful strategy is to have an index for word pairs that begin with a common word
and combine it with a word-level inverted index. For example, the preceding query could
be evaluated by intersecting the inverted lists for "the house", in, and "the town". An
index of all word pairs beginning with any one of the three commonest words is about 1%
of the size of the Web data but allows phrase querying time to be approximately halved.

5. INDEX CONSTRUCTION

The single key problem that makes index construction challenging is that the volume
of data involved cannot be held in main memory in a dynamic data structure of the
kind typically used for cross-reference generation. The underlying task that needs to be
performed is essentially that of matrix transposition. But the documents–terms matrix
is very sparse, and is far too large to be manipulated directly as an array. Instead, index
construction techniques make use of index compression methods and either distributive
or comparison-based sorting techniques.
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Fig. 6. In-memory inversion.

In-Memory Inversion. A simple in-memory inversion algorithm is shown in Figure 6.
The key idea is that a first pass through the documents collects term frequency infor-
mation, sufficient for the inverted index to be laid out in memory in template form. A
second pass then places pointers into their correct positions in the template, making
use of the random-access capabilities of main memory. The advantage of this approach
is that almost no memory is wasted compared to the final inverted file size since there
is negligible fragmentation. In addition, if compression is used, the index can be repre-
sented compactly throughout the process. This technique is viable whenever the main
memory available is about 10%–20% greater than the combined size of the index and
vocabulary that are to be produced. It is straightforward to extend the in-memory al-
gorithm to include word positions, but the correspondingly larger final index will more
quickly challenge the memory capacity of whatever hardware is being used since indi-
vidual list entries may become many kilobytes long.

It is also possible to extend the in-memory technique to data collections where index
size exceeds memory size by laying out the index skeleton on disk, creating a sequence
of partial indexes in memory, and then transferring each in a skip-sequential manner
to a template that has been laid out as a disk file. With this extended method, and
making use of compression, indexes can be built for multi-gigabyte collections using
around 10–20MB of memory beyond the space required for a dynamic vocabulary.

Sort-Based Inversion. A shortcoming of two-pass techniques of the kind sketched in
Figure 6 is that document parsing and fetching is a significant component of index con-
struction costs, perhaps half to two-thirds of the total time for Web data. The documents
could be stored parsed during index construction, but doing so implies substantial disk
overheads, and the need to write the parsed text may outweigh the cost of the second
parsing.

Other index construction methods are based on explicit sorting. In a simple form of
this approach, an array or file of 〈t, d , fd ,t〉 triples is created in document number order,
sorted into term order, and then used to generate the final inverted file.

With careful sequencing and use of a multiway merge, the sort can be carried out in-
place on disk using compressed blocks. The disk space overhead is again about 10% of
the final compressed index size, and memory requirements and speed are also similar
to partitioned inversion. As for partitioned inversion, the complete vocabulary must be
kept in memory, limiting the volume of data that can be indexed on a single machine.

Merge-Based Inversion. As the volumes of disk and data grow, the cost of keeping the
complete vocabulary in memory is increasingly significant. Eventually, the index must
be created as an amalgam of smaller parts, each of which is constructed using one of the
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Fig. 7. Merge-based inversion.

Fig. 8. Merge-build process.

previous techniques or using purely in-memory structures. Figures 7 and 8 illustrate
this process.

In merge-based inversion, documents are read and indexed in memory until a fixed
capacity is reached. Each inverted list needs to be represented in a structure that can
grow as further information about the term is encountered, and dynamically resizable
arrays are the best choice. When memory is full, the index (including its vocabulary) is
flushed to disk as a single run with the inverted lists in the run stored in lexicographic
order to facilitate subsequent merging. As runs are never queried, the vocabulary of a
run does not need to be stored as an explicit structure; each term can, for example, be
written at the head of its inverted list. Once the run is written, it is entirely deleted
from memory so that construction of the next run begins with an initially empty
vocabulary.

When all documents have been processed, the runs are merged to give the final index.
The merging process builds the final vocabulary on the fly and, if a large read buffer
is allocated to each run, is highly efficient in terms of disk accesses. If disk space is
scarce, the final index can be written back into the space occupied by the runs as they
are processed as the final index is typically a little smaller than the runs—vocabulary
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information is not duplicated, and the final inverted lists can be represented more
efficiently.

Merge-based index construction is practical for collections of all sizes. In particular,
it scales well and operates effectively in as little as 100MB of memory. In addition, disk
space overheads can be restricted to a small fraction of the final index; only one parsing
pass is required over the data; and the method extends naturally to phrase indexing.
Finally, the compression techniques described in Section 8 can further reduce the cost
of index construction by reducing the number of runs required.

6. INDEX MAINTENANCE

Inserting one document into a text databases involves, in principle, adding a few bytes
to the end of every inverted list corresponding to a term in the document. For a document
of reasonable size, such an insertion involves fetching and slightly extending several
hundred inverted lists and is likely to require 10–20 seconds on current hardware.
In contrast, with merge-based inversion, the same hardware can index around 1,000
documents per second. That is, there is a 10,000-fold disparity in cost between these
two approaches.

For fast insertion, it is necessary to avoid accessing the disk-resident inverted lists of
each term. The only practical solution is to amortize the update costs over a sequence of
insertions. The properties of text databases, fortunately, allow several strategies for cost
amortization. In particular, for ranking, it is not always necessary for new documents to
be immediately available for searches. If they are to be searchable, new documents can
be made available through a temporary in-memory index—in effect, the last subindex
in the merging strategy.

Three broad categories of update strategies are available: rebuild from scratch, merge
an existing index with an index of new documents, and incremental update.

Rebuild. In some applications, the index may not to be updated online at all. Instead,
it can be periodically rebuilt from scratch. Consider, for example, a university Web
site. New documents are only discovered through crawling and immediate update is
not essential. For a gigabyte of data, rebuilding takes just a few minutes, a small cost
compared to that of fetching the documents to index.

Intermittent Merge. The inverted lists for even large numbers of documents can easily
be maintained in the memory of a standard desktop computer. If the lists are in memory,
it is cheap to insert new documents as they arrive; indeed, there is no difference between
maintaining such lists and the algorithm described in Figure 7.

If existing documents are indexed in a standard inverted file and new documents are
indexed in memory, the two indexes can share a common vocabulary, and all documents
can be made available to queries via a straightforward adaptation of the methods de-
scribed earlier. Then when memory is full, or some other criterion is met, the in-memory
index is merged with the on-disk index. The old index can be used until the merge is
complete, at the cost of maintaining two complete copies of the inverted lists. During the
merge either a new in-memory index must be created or insertions must temporarily be
blocked, and thus, during the merge, new documents are only available via exhaustive
search.

It was argued earlier that inverted lists should be stored contiguously as accessing a
large number of blocks would be a dominant cost of query evaluation. However, if the
number of blocks is constrained (for instance, an average of three per term), the time
to evaluate queries can similarly be controlled. In addition, if the index is arranged as
a sequence of subindexes, each one no greater than a given fraction of the size of the
next (that is, the sizes form a geometric sequence), then only a small part of the index
is involved in most merge operations. This combination of techniques allow an index to
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be built incrementally, and be simultaneously available for querying, in just twice the
time required by an offline merge-based build.

Incremental Update. A final alternative is to update the main index term by term, as
and when opportunity arises, with some terms’ in-memory lists covering more docu-
ments than others’. This process is similar to the mechanisms used for maintaining
variable-length records in a conventional database system. In such an asynchronous
merge, a list is fetched from disk, the new information is integrated into the list, and
the list is then written back. Using standard free-space management, the list can either
be written back in place or, if there is insufficient space, written to a new location.

The per-list updates should be deferred for as long as possible to minimize the number
of times each list is accessed. The simplest approach is to process as for the merging
strategy and, when a memory limit is reached, then proceed through the whole index,
amending each list in turn. Other possibilities are to update a list only when it is fetched
in response to a query or to employ a background process that slowly cycles through the
in-memory index, continuously updating entries. In practice, these methods are not as
efficient as intermittent merge, which processes data on disk sequentially.

Choosing an Update Strategy. For reasonable collection sizes, merging is the most effi-
cient strategy for update but has the drawback of requiring significant disk overheads.
It allows relatively simple recovery as reconstruction requires only a copy of the index
and the new documents. In contrast, incremental update proceeds in place with some
space lost due to fragmentation. But recovery in an incremental index may be complex
due to the need to track which inverted lists have been modified.

For smaller, relatively static collections, the cost of rebuild may exceed that of other
methods, but still be of little consequence compared to the other costs of maintaining
the database. And if the collection is highly dynamic, such as a Web site in which
documents are edited as well as inserted, then inserting or deleting a single word in a
document may affect all the word positions, for example, and rebuild may be the only
plausible option.

7. DISTRIBUTED INFORMATION RETRIEVAL

When large volumes of data are involved or when high query volumes must be sup-
ported, one machine may be inadequate to support the load even when the various
enhancements surveyed earlier are incorporated. For example, in mid-2004, the Google
search engine processed more than 200 million queries a day against more than 20TB
of crawled data, using more than 20,000 computers.

To handle the load, a combination of distribution and replication is required. Dis-
tribution refers to the fact that the document collection and its index are split across
multiple machines and that answers to the query as a whole must be synthesized from
the various collection components. Replication (or mirroring) then involves making
enough identical copies of the system so that the required query load can be handled.

Document-Distributed Architectures. The simplest distribution regime is to partition the
collection and allocate one subcollection to each of the processors. A local index is
built for each subcollection; when queries arrive, they are passed to every subcollec-
tion and evaluated against every local index. The sets of subcollection answers are
then combined in some way to provide an overall set of answers. The advantages of
such a document partitioned system are several; collection growth is accommodated
by designating one of the hosts as the dynamic collection so that only it needs to
rebuild its index; and the computationally expensive parts of the process are dis-
tributed equally across all of the hosts in the computer cluster. The dashed region
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Fig. 9. Two ways in which the index of Figure 3 might be partitioned and distributed across a cluster of
machines.

in Figure 9 shows one component of a document-distributed retrieval system with
this one processor indexing all terms that appear in the first two documents of the
collection.

Term-Distributed Architectures. An alternative strategy is term partitioning. In a term-
partitioned index, the index is split into components by partitioning the vocabulary,
with one possible partition shown by the dotted horizontal split in Figure 9. Each
processor has full information about a subset of the terms, meaning that to handle a
query, only the relevant subset of the processors need to respond. Term partitioning
has the advantage of requiring fewer disk seek and transfer operations during query
evaluation than document-partitioning because each term’s inverted list is still stored
contiguously on a single machine rather than in fragments across multiple machines.
On the other hand, those disk transfer operations each involve more data. More sig-
nificantly, in a term-partitioned arrangement, the majority of the processing load falls
to the coordinating machine, and experiments have shown that it can easily become a
bottleneck and starve the other processors of work.

Choosing a Distribution Strategy. Document distribution typically results in a better
balance of workload than does term partitioning and achieves superior query through-
put. It also allows more naturally for index construction and for document insertion.
On the other hand, index construction in a term-partitioned index involves first of all
distributing the documents and building a document-partitioned index, and then ex-
changing index fragments between all pairs of processors after the vocabulary split
has been negotiated. Document distribution also has the pragmatic advantage of still
allowing a search service to be provided even when one of the hosts is offline for some
reason since any answers not resident on that machine remain available to the system.
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On the other hand, in a term-distributed system, having one machine offline is likely
to be immediately noticeable.

The Google implementation uses a document-partitioned index with massive repli-
cation and redundancy at all levels: the machine, the processor cluster, and the site.

It is also worth noting that document partitioning remains effective even if the collab-
orating systems are independent and unable to exchange their index data. A distributed
system in which a final result answer list is synthesized from the possibly-overlapping
answer sets provided by a range of different services is called a metasearcher.

8. EFFICIENT INDEX REPRESENTATIONS

A central idea underpinning several aspects of efficient indexing and query processing
is the use of compression. With appropriate compression techniques, it is possible to
simultaneously reduce both space consumption and disk traffic. Compression also re-
duces overall query evaluation time. This section introduces a range of integer coding
techniques, and describes their use in inverted file compression.

Compact Storage of Integers. In a simple implementation of an inverted file index, 32-bit
and 16-bit integers might be used respectively for document identifiers and term fre-
quencies since these sizes are universally supported by compilers and are large enough
to hold the likely values. However, fixed-width integers are not particularly space-
efficient, and large savings can be obtained using quite simple compression techniques.

An efficient representation for an inverted list requires a method for coding integers
in a variable number of bits. Using a fixed number of bits for each number, whether 32
or 20, is inconvenient: it limits the maximum value that can be stored, and is wasteful if
most numbers are small. Variable-length codes can be infinite, avoiding the problem of
having a fixed upper bound; and can be constructed to favor small values at the expense
of large.

Parameterless Codes. The simplest variable-bit infinite code is unary which represents
the value x > 0 as x − 1 “1” bits followed by a terminating “0” bit.

Unary is an example of a fixed code corresponding to a fixed distribution and is
unparameterized. Other unparameterized codes for integers are Elias’ gamma and
delta codes. In the gamma code, integer x > 0 is factored into 2e +d where e = 	log2 x
,
and 0 ≤ d < 2e. The codeword is formed as the concatenation of e + 1 represented in
unary and d represented in binary in e bits. In the delta code, the value of e + 1 is
represented using the gamma code and is followed by d in binary, as for gamma.

In both codes, each codeword has two parts, a prefix and a suffix. The prefix indicates
the binary magnitude of the value and tells the decoder how many bits there are in the
suffix part. The suffix indicates the value of the number within the corresponding binary
range. Table II gives some example codewords for each of these three unparameterized
codes. The colons used in the codewords to separate the prefix and suffix parts are
purely illustrative.

Which code is preferable depends on the probability distribution Pr(x) governing the
values x that are being coded. Using Shannon’s relationship between the probability of
a symbol and its ideal codeword length, len(x) = − log2 Pr(x), it can be seen that unary
corresponds to the probability distribution Pr(x) = 2−x . That is, when half of all values
are the number 1, a quarter are 2, an eighth are 3, and so on, then unary is the most
efficient coding mechanism. When approximately half of all values are the number 1, a
quarter are (equally one of) 2 or 3, an eighth are (equally one of) 4, 5, 6, or 7, and so on,
and in general Pr(x) ≈ 1/(2x2), then gamma is the most efficient coding mechanism.

However, inspecting a sequence of bits one by one is relatively costly on machines for
which the basic unit of access is multiples of eight bits. If each code occupies a sequence
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Table II. Example Codewords Using the Unary, Gamma, and Delta Codes

value unary gamma delta

1 0 0: 0::
2 10 10:0 10:0:0
3 110 10:1 10:0:1
4 1110 110:00 10:1:00

10 1111111110 1110:010 110:00:010
100 1111110:100100 110:11:100100

1,000 1111111110:111101000 1110:010:111101000

Colons are used as a guide to show the prefix and suffix components in
each codeword. All three codes can represent arbitrarily large numbers;
the unary codewords for 100 and 1,000 are omitted only because of their
length.

Fig. 10. Encoding and decoding variable-length
byte-aligned codes. Input values to the encoder must
satisfy x ≥ 1.

of whole bytes, the bit operations can be eliminated. With this in mind, another simple
unparameterized code is to use a sequence of bytes to code a value x ≥ 1, shown in
Figure 10. The idea is very simple: if x ≤ 128, then a single byte is used to represent
x − 1 in binary, with a leading “0” bit; otherwise, the low-order seven bits of x − 1 are
packed into a byte with a leading “1” bit, and the quantity (x div 128) is recursively
coded the same way.

Thus the byte 2, with the bit-pattern 0000 0010, represents the integer 3; the byte
9, with the bit-pattern 0000 1001, represents the (decimal) integer 10; and the double-
byte 147:7, with the bit-pattern 1110 0111 : 0000 0111, represents 1044 since 1044 =
128 × (7 + 1) + (147 − 127). This approach is a form of gamma code in which the suffix
length is a multiple of seven instead of a multiple of one. Several studies have explored
bytewise coding and found it to be more efficient than bitwise alternatives. An enhanced
version in which the split between continuing and terminating bytes is signaled by a
different value than 128 has also been described and offers the possibility of improved
compression effectiveness.

As well as offering economical decoding, the bytewise coding mechanism facilitates
fast stepping through a compressed stream looking for the kth subsequent code. Since
each codeword ends with a byte in which the top bit is a “0”, it is easy to step through a
compressed sequence and skip over exactly k coded integers without having to decode
each of them in full.
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Fig. 11. Encoding using a Golomb code with parameter b. Input values must satisfy
x ≥ 1.

Table III. Example Codewords Using Three Different Golomb Codes

value b = 3 b = 5 b = 16

1 0:0 0:00 0:0000
2 0:01 0:01 0:0001
3 0:11 0:10 0:0010
4 10:0 0:110 0:0010

10 1110:0 10:110 0:1001

Colons are used as a guide to show the prefix and suffix components in
each codeword. All three codes can represent arbitrarily large numbers.

Golomb and Rice Codes. The Elias codes just described have the property that the
integer 1 is always encoded in one bit. However, d-gaps of 1 are not particularly common
in inverted lists. More pertinently, within the context of a single inverted list with
known length, the likely size of the numbers can be accurately estimated. It is therefore
desirable to consider schemes that can be parameterized in terms of the average size
of the values to be coded.

Golomb codes, described in Figure 11, have this property. Integer x ≥ 1 is coded
in two parts—a unary bucket selector, and a binary offset within that bucket. The
difference between this and the Elias codes is that, in Golomb codes, all buckets are
the same size. The use of a variable-length binary code for the remainder r means that
no bit combinations are wasted even when the parameter b is not an exact power of
two. Table III gives some examples of the codewords generated for different values of
b. When b is a power of two, b = 2k , the suffix part always contains exactly k bits.
These are known as Rice codes and allow simpler encoding and decoding procedures.
An example Rice code appears in the last column of Table III.

Matching Code to Distribution. The implied probability distribution associated with
the Elias gamma code was described earlier; Golomb codes are similarly minimum-
redundancy when

Pr(x) ≈ (1 − p)x−1 p ,

provided that

b =
⌈

log(2 − p)

− log(1 − p)

⌉
≈ 0.69 × 1

p
,

where p is the parameter of the geometric distribution (the probability of success in
a sequence of independent trials). As we now explain, an inverted list can be repre-
sented as a sequence of integers that are, under a reasonable assumption, a sequence
of independent (or Bernoulli) trials.

Binary Codes. Other coding mechanisms can also perform well and even binary codes
can realize compact representations if the data is locally homogeneous. At the same
time, they can provide decoding speeds as good as bytewise codes. In the simplest
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example of this approach, a sequence of values is represented by fitting as many binary
codes as possible into the next 32-bit output word. For example, if all of the next seven
sequence values are smaller than 17, then a set of 4-bit codewords can be packed into
a single output word. Similarly, if all of the next nine values are smaller than 9, an
output word containing 3-bit codewords can be constructed. To allow decoding, each
word of packed codes is prefixed by a short binary selector that indicates how that word
should be interpreted.

As with the bytewise coding method, this approach supports fast identification of the
kth subsequent codeword since all that is required is that the selector of each word be
examined to know how many codewords it contains.

Compressing Inverted Lists. The representation of inverted lists introduced earlier de-
scribed each inverted list as a sequence of 〈d, fd,t〉 values with the restriction that each
document identifier d be an ordinal number. From a database perspective, imposing
an ordinal identifier appears to be a poor design decision because it has implications
for maintenance. However, text databases are not manipulated and updated in the
ways that relational databases are, and, in practice, the use of a simple mapping table
obviates the difficulties.

The frequencies fd,t are usually small (with a typical median of 1 or 2) and can be
efficiently represented using unary or gamma. But representing raw document iden-
tifiers using these codes gives no saving since the median value in each inverted list
is N/2.

On the other hand, if document identifiers are sorted and first-order differences (d -
gaps) are stored, significant savings are possible. If a term appears in a random subset
of ft of the N documents in the collection, the d-gaps conform to a geometric distribution
with probability parameter p = ft/N and can thus be coded effectively using a Golomb
code or one of the other codes. For example, a Golomb-gamma-coded index of all words
and numbers occurring in the documents for the NewsWire collection would occupy about
7% of the text size. In this approach, the representation for each inverted list consists of
alternating d-gap values and fd,t values, each occupying a variable number of bits. The
d-gap values are represented as Golomb codes, using a parameter b determined from
the number of 〈d, fd,t〉 pairs in that inverted list, and the fd,t values are represented
using the gamma code.

Use of Golomb codes does, however, present problems for the update strategy of in-
termittent merge. If Golomb codes are used for representing document identifiers, the
merge process involves decoding the existing list and recoding with new parameters,
but processing the existing list will then be the dominant cost of update, and should
be avoided. One solution is that the old Golomb parameter could continue to be used
to compress the added material at some small risk of gradual compression degrada-
tion. Alternatively, if static codes are used and lists are document-ordered, new 〈d, fd,t〉
values can be directly appended to the end of the inverted lists. For other list order-
ings, such as those described in Section 9, there may be no alternative to complete
reconstruction.

Compression Effectiveness. The effectiveness of compression regimes is particularly ev-
ident for inverted lists representing common words. To take an extreme case, the word
the is likely to occur in almost every document (in an English-language collection), and
the vast majority of d-gaps in its inverted list will be 1 and represented in just a single
bit. Allowing for the corresponding fd,t value to be stored in perhaps (at most) 10–11
bits, around 12 bits is required per 〈d, fd,t〉 pointer for common words, or one-quarter
of the 48 bits that would be required if the pointer was stored uncompressed. The ad-
ditional space savings that can be achieved with stopping are, for this reason, small.
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However, stopping does yield significant advantages during index maintenance because
stopping means that updates to the longest lists (those of common words) are avoided.

Less frequent words require longer codes for their d-gaps but, in general, shorter
codes for their fd,t values. As a general rule-of-thumb, each 〈d, fd,t〉 pointer in a com-
plete document-level inverted index requires about 8 bits when compressed using a
combination of Golomb and Elias codes. Use of the less-precise bytewise code for one
of the two components adds around 4 bits per pointer and, for both components, adds
around 8 bits per pointer. The word-aligned code has similar performance to the byte-
wise code for large d-gaps but obtains better compression when the d-gaps are small.

For example, a bytewise-gamma-coded index for the NewsWire data (with the d-gaps
represented in a bytewise code and the fd,t values coded using gamma) would occupy

about 70×106 ×12 bits or approximately 10% of the source collection. In this index, the
document identifiers are byte aligned, but the fd,t values are not, so the list is organized
as a vector of document numbers and a separate vector of frequencies with the two lists
decoded in parallel when both components are required. While the compression savings
are not as great as those attained by Golomb codes, the bytewise and word-aligned codes
bring other benefits.

Compression of Word Positions. Uncompressed, at, for instance, two bytes each (so no
document can exceed 65,536 words), word positions immediately account for the bulk
of index size: 360MB for NewsWire, and 22GB for Web. However, these costs can be re-
duced by taking differences, just as for document identifiers, and Golomb codes can
be used to represent the differences in either a localized within-this-document sense,
or, more usefully, in an average-across-all-documents manner. In the latter case, the
vocabulary stores two b values, one used to code the d-gaps in the way that was de-
scribed earlier, and a second to code the w-gaps counting the word intervals between
appearances of that term. Static codes—gamma, delta, bytewise, or word-aligned—
also give acceptable compression efficiency and may be attractive because of their
simplicity.

The choice of coding scheme also affects total fetch-and-decode times with the byte-
wise and word-aligned codes enjoying a clear advantage in this regard. Bitwise codes
cannot be easily stepped through, and queries that require only bag-of-words processing
can be considerably slower with an interleaved word-level index than with a document-
level index.

An aspect of inverted indexes that is dramatically altered by the introduction of word
positions is the cost of processing common words. In a document-level index, common
words such as the are relatively cheap to store. In a word-level index, the average per-
document requirement for common words is much larger because of the comparatively
large number of fd,t word-gap codes that must be stored. In the case of the Web data, just
a handful of inverted lists account for more than 10% of the total index size. Processing
(or even storage) of such lists should be avoided whenever possible.

Nonrandom Term Appearances. If documents are chronological, terms tend to cluster.
For example, in the 242,918 documents of the Associated Press component of TREC,
there are two definite clusters for hurricane, one due to hurricane Gilbert in September
1988, and a second resulting from hurricane Hugo in September 1989. Similar clus-
tering arises with web crawls. Some sites are topic-specific so that words that are rare
overall may be common within a group of pages. A particular cause of this effect is
indexing of documents that are written in a variety of languages.

The nonuniform distribution can be exploited by an interpolative code which trans-
mits the mid-point of the list of document numbers in binary, then recursively handles
the two sublists in the resulting narrowed ranges. For typical collections, this code

ACM Computing Surveys, Vol. 38, No. 2, Article 6, Publication date: July 2006.



24 J. Zobel and A. Moffat

results in an average of 0.5 to 1.5 bits saved per 〈d, fd,t〉 pointer compared to a Golomb
code. The drawback of the interpolative code is that it is more complex to implement
and slower in decoding.

The word-aligned binary coding method is also sensitive to localized clustering, a run
of consistently small d-gaps is packed more tightly into output words than is a sequence
containing occasional larger ones.

Pros and Cons of Compression. Compression has immediately obvious benefits. It re-
duces the disk space needed to store the index; and during query evaluation, it reduces
transfer costs (the lists are shorter) and seek times (the index is smaller). Compression
also reduces the costs of index construction and maintenance.

A less obvious benefit of index compression is that it improves caching. If a typical
inverted list is compressed by a factor of six, then the number of inverted lists that can
be retained in memory is increased by that same factor. In a retrieval system, queries
arrive with a skew distribution with some queries and query terms much more common
than others. Queries for Chicago weather forecast far exceed those for Kalgoolie
weather forecast, for example. There can also be marked temporal effects. People
use Web search engines to check questions on broadcast quiz shows, for example, so
the same unusual query might arrive thousands of times in a short space of time.
Increasing the effectiveness of caching can dramatically cut the cost of resolving a
stream of queries.

The principal disadvantage of compression is that inverted lists must be decoded
before they are used. A related problem is that they may need to be recoded when they
are updated, for example, if parameters change. For some of the codes considered, the
addition of new information can require complex recoding.

On current desktop machines, the decoding cost is more than offset by the reduction
in disk seek costs. More importantly, as the ratio of the speed between processors and
disk continues to diverge, the performance benefit available through compression is
increasing. For byte- and word-aligned codes, which allow each document identifier to
be decoded in just a few instruction cycles, the processing cost is more than offset by
the reduction in memory-to-cache transfer costs.

Thus, if the index is larger than the available main memory or cannot be buffered
for some other reason, there is no disadvantage to compression. And even if the index
is in memory, processing can be faster than for uncompressed data. Use of appropriate
index compression techniques is an important facet of the design of an efficient retrieval
system.

9. LIMITING MEMORY REQUIREMENTS

If the standard query evaluation algorithm is used for queries that involve common
words, most accumulators are nonzero, and an array of N entries Ad is the most space-
and time-efficient structure. But the majority of those accumulator values are trivially
small, as the only matching terms are one or more common words. Analysis of search
engine logs has demonstrated that common terms are not the norm in queries, and
analysis of relevance has demonstrated that common terms are of low importance. It
thus makes sense to ask if there are better structures for the accumulators, requiring
fewer than N elements.

Accumulator Limiting. If only documents with low ft (i.e., rare) query terms are al-
lowed to have an accumulator, the number of accumulators can be greatly reduced.
This strategy is most readily implemented by imposing a limit L on the number of
accumulators as shown in Figure 12.
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Fig. 12. The limiting method for restricting the number of accumulators during
ranked query evaluation. The accumulator limit L must be set in advance. The
thresholding method involves a similar computation, but with a different test at
step 2(b)i.

In ranking, using the models described earlier, a document can have a high similarity
score even if several query terms are missing. In the limiting approach, as each 〈d, fd,t〉
value is processed, a check is made to determine whether there is space in the set
of accumulators to consider additional documents. Thus the algorithm enforces the
presence of the query terms that are weighted highly because of their frequency of
occurrence in the query or because of their rareness in the collection. While the behavior
of the ranking is altered, it is arguably for the better since a document that is missing
the most selective of the query terms is less likely to be relevant. Some of the Web search
engines only return matches in which all of the query terms are present, a strategy that
appears to be effective in practice for short queries but, in experimental settings, has
been found to be less compelling.

Accumulator Thresholding. Another approach of a similar type is to use partial
similarities—the contribution made by a term to a document’s similarity, or wq,t ×wd ,t—
to determine whether an accumulator should be created. In this approach, accumulators
are created if it seems likely that the document will ultimately have a sufficiently high
similarity, with the test |A| < L in Figure 12 replaced by a test wq,t ×wd ,t > S, for some
value S. The threshold S is initially small but is increased during query processing
so that it becomes harder for documents to create an accumulator as the computation
proceeds.

For a set of accumulators that is limited to approximately 1%–5% of the number
of documents, in the context of TREC-style long queries and evaluation, there is no
negative impact on retrieval effectiveness.

However, with Web-style queries, both the limiting and the thresholding methods
can be poor. In the limiting method, the limit tends to be reached part way through the
processing of a query term, and thus the method favors documents with low ordinal
identifiers; but if the limit is only tested between lists, then the memory requirements
are highly unpredictable. Similar problems affect thresholding. A solution is to modify
the thresholding approach so that, not only are accumulators created when the new
contribution is significantly large, but existing accumulators are discarded when they
are too small. With this approach, the number of accumulators can be fixed at less than
1% of the number of documents for large Web-like collections.

Data Structures. Comparing the two approaches, the limit method gives precise con-
trol over memory usage, whereas the threshold method is less rigid and allows even
common terms to create accumulators for particular documents if they are sufficiently
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frequent in those documents. Both methods reduce the number of nonzero accumula-
tors, saving memory space without affecting retrieval effectiveness. And, as examples
of more general query pruning methods, they can also reduce disk traffic and CPU time,
using methods that are discussed shortly.

To maintain the set of accumulators in either of these two approaches, a data struc-
ture is required. An obvious solution is to store the accumulators as a list ordered by
document number and successively merge it with each term’s inverted list.

Representing Document Lengths. Storage of the set of document lengths Wd is another
demand on memory during ranking. Figures 2, 4, and 12 suggest that the Wd values
be stored in a file on disk, but execution is faster if they can be retained in memory.

There are two aspects of their use that make memory residence possible. First, they
are an attribute of the document collection rather than of any particular query. This
means that the array of W values can be initialized at system startup time rather than
for every query and that, in a multithreaded evaluation system, all active queries can
access the same shared array.

The second aspect that allows memory-residence is that, like many other numeric
quantities associated with ranked query evaluation, they are imprecise numbers and
result from a heuristic rather than an exact process. Representing them to 64 or 32 bits
of precision is, therefore, unnecessary. Experiments have shown that use of 8- or 16-bit
approximate weights has negligible effect on retrieval effectiveness.

Storage for the Vocabulary. Except for the document mapping table and assorted buffers,
the only remaining demand on main memory is the term lookup dictionary or vocabu-
lary. For collections such as NewsWire and Web, retaining the vocabulary in main memory
is expensive since each entry includes a word, ancillary fields such as the weight of that
term, and the address of the corresponding inverted list.

Fortunately, access to the vocabulary is only a small component of query processing;
if a B-tree-like structure is used with the leaf nodes on disk and internal nodes in
memory, then a term’s information can be accessed using just a single disk access,
and only a relatively small amount of main memory is permanently consumed. For
example, consider the Web collection described in Table I. The 16 million distinct terms
in that collection correspond to a vocabulary file of more than 320MB but if each leaf
node contains (say) 8kB of data, around 400 vocabulary entries, then the in-memory
part of the structure contains only 40,000 words, occupying less than 1MB. As for the
document weights, this memory is shared between active queries and is initialized at
startup rather than once per query.

10. REDUCING RETRIEVAL COSTS

The core implementation, together with simple strategies for reducing memory con-
sumption, provides a functional query evaluation system. For example, in the context
of a desktop machine and a gigabyte-scale text collection, typical queries of a few terms
can be resolved using these techniques in well under a second. In addition, with ac-
cumulator limiting, compact document weights, and a B-tree for the vocabulary, the
memory footprint can be limited to a dozen or so megabytes. However, substantial fur-
ther savings can be made, and, with careful attention to detail, a single standard PC can
easily provide text search for a large organization such as a university or corporation.

In the core implementation (Figure 4), the principal cost is retrieval and decoding
of inverted lists. That is, every 〈d, fd,t〉 pair contributes to a valid accumulator. With
limited-accumulator query evaluation (Figure 12), however, most 〈d, fd,t〉 pairs do not
correspond to a valid accumulator, and processing time spent decoding these pairs
is wasted. We also argued earlier that to facilitate compression and the gains that
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compression brings, the document numbers in each list should be sorted. However, use
of compression means that each number is stored in a variable number of bits or bytes
so random access (e.g., to support binary search) into inverted lists is not possible.

Skipping. A proposal from the mid-1990s is that decoding costs be reduced by the
insertion of additional structure into inverted lists. In this skipping approach, descrip-
tors are periodically embedded in each compressed inverted list, dividing the list into
chunks. The descriptor can be used to determine whether any 〈d, fd,t〉 value in the
chunk corresponds to a valid accumulator; if not, that chunk does not need to be de-
coded, and processing can immediately move to the next chunk. However, all chunks
still need to be fetched. Note also that, if the chunks are as large as disk blocks, the
great majority will need to be decoded, and, if they are smaller, more chunks can be
skipped but most disk blocks will still contain a valid chunk. In experiments at the time,
we found that skipping yielded worthwhile performance gains. Since then, processors
have become much faster, while disk access times have not greatly improved, and the
benefits provided by skipping have eroded.

To reduce disk transfer costs, it is necessary to avoid fetching the inverted lists in
their entirety. One obvious method is to only fetch inverted lists for rare terms, but
experiments consistently show that all terms should be processed if effectiveness is to
be maintained. The more attractive option is to rearrange inverted lists so that, in a
typical query, only part of each relevant list need be fetched. The schemes described
earlier for accumulator limitation provide criteria for deciding whether a 〈d, fd,t〉 value
will be used; we now explain how these criteria can be used to restructure inverted lists
without seriously degrading compression effectiveness.

Frequency-Ordered Inverted Lists. The principle of accumulator limitation is that large
values of wq,t ×wd ,t should be processed first. The default heuristic for identifying these
values is to process the low- ft terms first as their lists are likely to contain more large
wq,t × wd ,t values than would the lists of high- ft terms. However, in a typical inverted
list, most fd,t values are small, while only a few are large. If only the large fd,t values
are interesting, that is, can contribute to a useful wq,t ×wd ,t value, then they should be
stored at the beginning of their inverted list rather than somewhere in the middle of
the document-based ordering. For a given threshold S and term t, all wq,t × wd ,t > S
values (see Equation (1)) will then be stored before any smaller ones.

To make use of this idea, the index can be reorganized. A standard inverted list is
sorted by document number, for example,

〈12, 2〉 〈17, 2〉 〈29, 1〉 〈32, 1〉 〈40, 6〉 〈78, 1〉 〈101, 3〉 〈106, 1〉.
When the list is reordered by fd,t, the example list is transformed into

〈40, 6〉 〈101, 3〉 〈12, 2〉 〈17, 2〉 〈29, 1〉 〈32, 1〉 〈78, 1〉 〈106, 1〉.
The repeated frequency information can then be factored out into a prefix component
with a counter inserted to indicate how many documents there are with this fd,t value:

〈6 : 1 : 40〉 〈3 : 1 : 101〉 〈2 : 2 : 12, 17〉 〈1 : 4 : 29, 32, 78, 106〉.
Finally, if differences are taken in order to allow compression, we get

〈6 : 1 : 40〉 〈3 : 1 : 101〉 〈2 : 2 : 12, 5〉 〈1 : 4 : 29, 3, 46, 28〉.
Repeated frequencies fd,t are not stored, giving a considerable saving. But within each
equal-frequency segment of the list, the d-gaps are now on average larger when the
document identifiers are sorted, and so the document number part of each pointer
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Fig. 13. Interleaved processing of inverted lists using a frequency- or impact-sorted index.
Blocks from the front of each list are applied to the set of accumulators in decreasing score
order until some stopping condition has been met. At the instant shown, 11 blocks have been
processed, and, if processing continues, the next block to be processed would be for the term
old.

increases in cost. In combination, these two effects typically result in frequency-sorted
indexes that are slightly smaller than document-sorted indexes.

Using a frequency-sorted index, a simple query evaluation algorithm is to fetch each
list in turn, processing 〈d, fd,t〉 values only while wq,t × wd ,t ≥ S, where S is the
threshold. If disk reads are performed one disk block at a time rather than on a whole-
of-inverted-list basis, this strategy significantly reduces the volume of index data to be
fetched without degrading effectiveness.

A practical alternative is for the first disk block of each list to be used to hold the
〈d, fd,t〉 values with high fd,t. These important blocks could then all be processed before
the remainder of any lists, ensuring that all terms are given the opportunity to create
accumulators. The remainder of the list is then stored in document order.

A more principled method of achieving the same aim is to interleave the processing of
the inverted lists. In particular, once the first block of each list has been fetched and is
available in memory, the list with the highest value of wq,t ×wd ,t can be selected, and its
first run of pointers processed. Attention then switches to the list with the next-highest
wq,t × wd ,t run which might be in a different list or might be in the same list.

During query processing, each list could be visited zero, one, or multiple times, de-
pending only on the perceived contribution of that term to the query. The interleaved
processing strategy also raises the possibility that query evaluation can be terminated
by a time-bound rather than a threshold since the most significant index information is
processed first. Figure 13 shows the interleaved evaluation strategy with list sections
presumed to be applied to the set of accumulators in decreasing order of numeric score.
The shaded sections of each list are never applied.

Impact-Ordered Inverted Lists. An issue that remains even in the frequency-sorted ap-
proach is that wq,t × wd ,t/Wd is the true contribution of term t to the similarity score
Sq,d , rather than wq,t × wd ,t . If it makes sense to frequency-sort the inverted lists into
decreasing wd,t order, then it makes even better sense to order them in decreasing im-
pact order using wd ,t/Wd as a sort key. Then all that remains is to multiply each stored
value by wq,t and add it to the corresponding accumulator. That is, an impact value
incorporates the division by Wd into the index.
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Fig. 14. Impact-ordered query evaluation.

If the inverted lists are then sorted by decreasing impact, the same interleaved pro-
cessing strategy can be employed. Now the blocks in the inverted list must be cre-
ated artificially rather than occurring naturally, since wd ,t/Wd is not integer-valued,
and exact sorting would destroy the d-gap compression. Hence, to retain compres-
sion, the impact values are quantized so that each stored value is one of a small num-
ber of distinct values, and integer surrogates are stored in the inverted lists in place
of exact wd ,t/Wd values. Experiments with this technique have shown that approx-
imately 10–30 distinct values suffice to give unaltered retrieval effectiveness com-
pared to full evaluation. And, unlike frequency-based methods, impact-sorted lists
are just as efficient for evaluation of the Okapi similarity heuristic described in
Equation (2).

With this change, each list is a document-sorted sequence of blocks of approxim-
ately-equal-impact pointers, and no fd,t values are stored. Compared to document- and
frequency-sorted indexes, the compressed size grows slightly because the average d-
gaps are bigger. Nevertheless, the index is still a small fraction of the size of the text
being indexed.

Query evaluation with an impact-ordered index becomes a matter of processing as
many blocks as can be handled in the time that is available. To process a block, an
integer contribution score that incorporates the impact score associated with that block
and the query term weight wq,t (which might be unity) is added to the accumulator of
every document recorded in the block. All query-time operations are on integers, also
making the final extraction phase significantly easier to manage. Impact-ordered query
evaluation is shown in Figure 14.

With an impact-sorted inverted file and integer surrogate weights, query processing is
extremely fast. Just as important is that time consumed by each query can be bounded,
independent of the number of terms in the query. When query load is light or when a
premium service has been purchased, a greater fraction of the blocks in each query can
be used to influence the result ranking.

Impacts provide another illustration of the flexible constraints on design of algo-
rithms for information retrieval. Information can be selectively thrown away or ap-
proximated without detriment to the output of the algorithm, although there may be
a beneficial change to efficiency. While the set of documents returned by impact-based
processing will not be the same as the set returned by the underlying computation in
Equation (1), the quality of the set (proportion of documents that are relevant) may be
unchanged. In practice, the effect is likely to be that one method gives better results
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than the other for some queries and worse results than the other for other queries. Such
change-but-no-difference effects are commonly observed in development of algorithms
for text query evaluation.

Other Considerations. When the inverted lists are impact- or frequency-sorted, they
are read in blocks rather than in their entirety, and contiguous storage is no longer
a necessity. Blocks with high-impact information could be clustered on disk, further
accelerating query processing. The lists for common terms—the ones with many doc-
ument pointers—will never be fully read, and a great deal of disk traffic is avoided.
Experiments with these techniques, using collections such as NewsWire, show that disk
traffic and processing time are reduced by a factor of up to three compared to previ-
ous techniques involving limited accumulators. The likely gain is even greater for the
larger Web collection. As a final advantage, the impact-sorted index dispenses with the
need for an array or file of Wd values.

The disadvantage of both frequency- and impact-sorted indexes is that Boolean
queries and index updates are more complex. To handle Boolean queries efficiently,
other index structures have been proposed. One approach is to use a blocked index.
Rather than use d-gaps that are relative to the previous document number, it is feasi-
ble to code d-gaps relative to the start of a block. This allows use of a form of binary
search at some loss of compression efficiency. Conjunctive Boolean queries can then be
processed extremely quickly.

However, updates remain complex. With document-ordered list organizations, new
〈d, fd,t〉 values can be appended to the list. In the enhanced organizations, the whole
of each list must be fetched and decoded. Whether this is a significant disadvantage
depends on the application.

Summary. We have described compression-based indexing and query evaluation tech-
niques for bag-of-word queries on a text database. Compared to the uncompressed,
document-sorted implementation described in Figure 4,

—disk space for a document-level index requires about 7%–9% of the size of the data
and has been reduced by a factor of around five;

—memory space for accumulators requires a dozen bytes for 5% of the documents in a
small collection or less than 1% of the documents in a large collection and has been
reduced by a factor of around twenty;

—CPU time for processing inverted lists and updating accumulators is reduced by a
factor of three or more;

—disk traffic to fetch inverted lists is reduced by a factor of five in volume and of two
or more in time (The relative savings increase with collection size);

—throughput of queries is reduced by making better use of memory, allowing more
effective caching of vocabulary entries, lists, and answers;

—construction time for indexes is cut by a factor of more than two, through reduction
in the disk-traffic bottleneck and reduction in the number of runs required to build
an index.

11. OTHER APPROACHES TO INDEXING

Querying can also be carried out without an index. For typical data and queries, building
an index requires about 10–50 times the cost of a string search. If queries are rare, or
the data is extremely volatile, it is reasonable to use a document-oriented querying
strategy of the type shown in Figure 2. An example is searching of a personal email
directory or search within a small collection of files.
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Fig. 15. Example of a suffix array.

For querying of larger collections, inverted files are not the only technology that has
been proposed. The two principal alternatives are suffix arrays and signature files. In
this section, we briefly outline these approaches and explain why they are not compet-
itive with inverted files for the applications considered in this article.

Suffix Arrays. A suffix array stores pointers into a source string, ordered according to
the strings they point at. The index can be of every character position or, for typical
retrieval applications, every word position. The structure provides access via a binary
search-like process which is fast if it can be assumed that both the array and the
underlying source string are available in memory.

Consider the first line of the Keeper collection annotated with byte offsets in the
string, commencing at zero, as shown in part A of Figure 15. In a word-level suffix
array, a list is made of the byte addresses at which words start, shown in the first row
of part B of Figure 15. The second row of part B shows the initial two characters of the
semi-infinite string that is the target of each pointer. To form the suffix array, the byte
pointers are reordered so that the underlying strings are sorted, using as many charac-
ters of the semi-infinite strings as are necessary to break ties, as shown in part C. Note
that the second of these two lines is provided only to allow the destinations of the point-
ers to be visualized by the reader. All that is actually stored is the original string, and an
array A containing one pointer for each word in the string, with A[0]=36, A[1]=31, and
so on.

One way of interpreting the resultant array of byte pointers is that they represent
a combined vocabulary and inverted index of every suffix string in the original text
with access provided directly to the bytes rather than via ordinal document identifiers.
To use the suffix array, the sorted byte pointers are binary searched, again using the
underlying strings to drive the comparisons. The output of each search is a pair of
indices into the suffix array, describing the first and last locations whose strings are
consistent with the supplied pattern. For example, to locate occurrences of keep in the
example array, the binary search would return 1 and 3 since all of A[1], A[2], and A[3]
contain byte addresses (31, 14, and 21, respectively) pointing at semi-infinite strings
in the original text that commence with the prefix keep. (If exactly the word keep was
required rather than as a prefix, a trailing delimiter could be added to the search key,
and then only A[1]=31 would be returned.)

It is straightforward to extend suffix arrays to phrase searching, and a range of sim-
ple techniques, such as conflating all nonalphabetic characters to a single separator
character for the purposes of string comparison, allow the same binary-searching pro-
cess to be applied regardless of the length or frequency of the phrase or words in it.
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Case-folding can also be achieved by making the string comparison function case-
insensitive as has been presumed in the example.

For large-scale applications, suffix arrays have significant drawbacks. The pointer
array is accessed via binary search so compression is not an option. For a word-aligned
suffix array, a 4-byte pointer is needed for each 6 bytes or so of text, and the underlying
text must also be retained. In total, the indexing system requires around 170% of the
space required by the input, all of it memory-resident. A suffix array-based retrieval
system for 1GB of text demands a computer with 2GB or more of memory, a require-
ment that scales linearly as the source message grows. Suffix array indexes are large
compared to inverted files because the repeated information cannot be usefully factored
out and because byte addresses are used rather than word-offset addresses. If the base
text is large, the suffix array itself can be indexed and partial strings stored in index to
avoid needing to access the base text. For very large texts, the pointers can be managed
hierarchically. However, these techniques add considerable complexity to the building
and searching processes.

Another drawback is that there is no equivalent of ranked querying. All but simple
stemming regimes are also problematic. On the other hand, suffix arrays offer increased
string searching functionality compared to inverted files—complex patterns, such as
wild-characters, can be handled. The principal strength of suffix arrays is that they
greatly accelerate grep-style pattern matching, swapping decreased time for increased
space.

Worth noting is that much of the functionality offered by a suffix array can be achieved
in the context of an inverted file by indexing the vocabulary either with a suffix array
spanning the vocabulary strings themselves or by a secondary inverted index making
use of the character bigrams or trigrams that comprise the vocabulary terms.

Signature Files. Signature files are a probabilistic indexing method. For each term,
s bits are set in a signature of w bits. The term descriptors for the terms that appear in
each document are superimposed (i.e., OR’ed together) to obtain a document descriptor,
and the document descriptors are then stored in a signature file of size wN bits for
N documents.

To query on a term, the query descriptor for that term is formed; all of the documents
whose document descriptors are a superset of the query descriptor are fetched; and the
false matches are separated from the true matches with only the latter returned to the
user as answers.

Assuming that all records are the same length, that is, then contain the same number
of distinct terms; all terms occurring in over 5% of records are stopped; and there is on
average just one false match per single-term query, then the index size is about 20% of
the text. With an unstopped index, signatures must be much wider, giving a 40%-of-text
index.

Variability in document length significantly complicates these calculations. With a
fixed-length signature, more bits are set for long documents than short. These docu-
ments are then more likely to be selected as false matches, and because they are long,
the cost of false-match checking is further increased. To get a false-match volume of one
average document-length, a signature file needs to be much larger than the indicative
sizes given here.

The simplest organization for a signature file is a sequence of signatures, which im-
plies that the whole index is processed in response to each query. A range of alternative
organizations of two kinds have been proposed. One is bitslicing in which the signature
file, viewed as a matrix, is transposed in which case it is only necessary to fetch a small
number of slices—perhaps 10 to 15—in response to a query. Each slice has one bit per
stored record, and so, for the Web collection, would contain 1.5MB of data.
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Another alternative organization is the use of descriptors in which signatures are
partitioned according to a small number of selected bits and only matching partitions
are fetched for each query. We are unaware of any practical demonstration of the mer-
its of such descriptor schemes. Bitslicing, however, has been explored experimentally,
including a range of variations designed to reduce costs. For example, slice length can
be dramatically reduced with a small increase in the number of slices fetched, although
costs remain linear in the number of stored documents.

Even for the relatively unsophisticated task of Boolean retrieval, signature files have
several crucial defects. One is the need to eliminate false matches. For a given signature
width, the number of false matches is linear in the collection size and hence, as the
number of indexed documents grows, the number of documents unnecessarily fetched
increases. For any reasonable parameter settings, this cost must dominate. And the
longer a document, the higher the likelihood that it will be retrieved as a false match.
Second, signature file indexes are large compared to compressed inverted files and are
no easier to construct or maintain. Third, they require more disk accesses for short
queries—exactly the kind that is commonplace in Web searching. And fourth, they are
even more inefficient if Boolean OR and NOT operators are permitted in addition to AND.

More critically, there is no sensible way of using signature files for handling ranked
queries or for identifying phrases. That is, there are no situations in which signature
files are the method of choice for text indexing even for exact-match Boolean style
searching.

12. BEYOND AN ELEMENTARY SEARCH ENGINE

We have outlined indexing and query evaluation algorithms that can be used in a
practical search engine. These algorithms can be used to index large volumes of data
and provide rapid response to user queries. However, in specific searching applications,
further improvements in performance are available. In this section, we briefly review
some of these options.

Crawling. Data acquisition is a key activity in dynamic systems. In unusual cases,
the revised content will be delivered as it is generated, and we need do no more than
index it. For example, a commercial arrangement might result in the daily delivery of
updated catalog entries for an online store.

More usually, however, the owners of data change it without regard for whether or not
it is indexed. Crawling is the process of seeking out changed data and feeding it back
to the retrieval system for incorporation into updated indexes. In principle, crawling is
easy, a set of seed URLs is used as the basis for the search, and those pages are fetched
one by one. Each hyperlink within those pages is extracted and, if it has not been
explored yet, appended to a queue of pending pages. Eventually, all pages reachable
from the seed set will have been accessed, and the process can be repeated.

However, there are many subtle issues that require attention if a crawler is to be
efficient. First, not all pages are of the same importance, and, while crawling the CNN
Web site at hourly intervals might be appropriate, crawling a set of University pages
probably is not. Indeed, the volume of data available might mean that the crawl simply
does not finish before it is necessary to start it again. In this case, a strategy for prior-
itizing page visits and aborting the crawl when only low-priority pages remain may be
required.

Second, not all pages are edited at the same rate, and editing may follow a regular
pattern. An adaptive crawler might be able to significantly reduce crawl volume by
identifying the update strategy that applies to pages and learning which pages are
almost never modified.
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Third, there are crawling traps that need to be anticipated and avoided—
unintentional traps such as recursive script-based Web pages that implement calendars
with a “next month” link are just one example. Fourth, the crawler needs to be sensitive
to the requirements of the site it is visiting and must stagger its requests so as to avoid
flooding it over a short period of time. Fifth, the crawler must be alert to the prob-
lem of duplicate pages and mirrored sites. And, finally, crawling is expensive because
it involves either payment per gigabyte of data fetched (for some connection modes)
whether it is useful or not, or paying for a high-capacity connection to the Internet so
that the necessary bandwidth can be achieved.

Caching. In many contexts, the same queries and query terms recur. For example,
many queries to the Web search engines are topical, and queries to a site-specific search
engine may also be clustered. (Many of the queries on the Web site of one of our uni-
versities contain the query term results. Over half of these queries are posed on the
two single days after first and second semester on which student grades are released.)
A search engine can take advantage of this behavior by caching.

There are several kinds of information that can be cached. The inverted lists that
are fetched in response to a query can be explicitly kept in memory. Alternatively, if
these lists are maintained in disk blocks, the operating system is likely to cache them
automatically on the basis of most-recently-used. As was noted earlier, compression
helps by increasing the impact of this caching.

It is tempting to store the vocabulary in memory because doing so means that a disk
access is avoided for every query term. However, if the vocabulary is large, keeping it
in memory reduces the space available for caching of other information and may not
be beneficial overall. Relying on the operating system swapping pages of vocabulary
information is almost certainly a poor decision, as the distribution of hot query terms
among pages is unlikely to be clustered in a useful way. An alternative is to manage
the vocabulary in a B-tree as discussed earlier and to explicitly cache recently-accessed
or frequently-accessed query terms in a separate small table.

Perhaps the most effective caching is of answer lists. If queries recur, it makes sense
to store their answer lists rather than recompute them. Even keeping them on disk is
effective as one short answer set can be fetched much more rapidly than can multiple
inverted lists. For a typical search engine, most users will only view the first r answers,
but it may be effective to keep the next r answers handy for the small percentage of
cases in which they are requested.

Another form of caching is phrase indexing. Indexing all phrases is impractical, but
using term-based inverted lists to identify which documents contain a phrase is ex-
pensive. The cost of phrase query processing could be significantly reduced if inverted
lists are explicitly maintained for common term combinations. That is, the users them-
selves, via their querying behavior, can guide the evaluation as to which phrases might
be worth explicitly storing when the index is next rebuilt.

One of the major bottlenecks of query evaluation is the need to fetch the documents
that are presented in the answer lists; most search engines return not only a document
identifier but a corresponding document summary or snippet. Typically these sum-
maries are based on the query and thus cannot be computed ahead of time. Saving com-
plete answer pages, including all of the required snippets, can thus be a dramatic saving.

Pre-Ordering. In the context of Web retrieval, techniques such as Google’s PageRank
can be used to determine a static score for each page to complement the dynamic score
calculated by whatever similarity function is being used. The final rank ordering is then
a blend of the static score which can be regarded as an a priori probability ordering
that a page is relevant to queries in general, and a dynamic score which reflects the
probability that a page is relevant to this particular query.

ACM Computing Surveys, Vol. 38, No. 2, Article 6, Publication date: July 2006.



Inverted Files for Text Search Engines 35

Static rankings are only useful in contexts where additional nontextual information
can be used such as (in the case of PageRank) the link structure. The PageRank of a
Web page is based on the link structure of the Web. Each page is assigned a score that
simulates the actions of a random Web surfer, someone who either with probability p
is equally likely to follow any of the links out of the page they are currently on, or with
probability 1 − p jumps to a new page chosen at random. An iterative computation can
be used to compute the long-term probability that such a user is visiting any particular
page and that probability is then used to set the PageRank. The effect is that pages with
many in-links tend to be assigned high PageRank values, especially if the pages that
host those links themselves have a high PageRank; pages with low in-link counts, or in-
links from only relatively improbable pages, are themselves deemed to be improbable
as answers.

HITS is a similar technique which scores pages as both authorities and hubs, again
using a matrix computation based on the connectivity graph established by the Web’s
hyperlinks. Loosely, a good hub is one that contains links to many good authorities,
and a good authority is one that is linked to from many good hubs. Hubs are useful
information aggregations and often provide some broad categorization of a whole topic,
whereas authorities tend to provide detailed information about a narrower facet of a
topic. Both may be useful to queriers.

Pages might also be assigned static scores contributions based on how similar they
are to an amalgam of previous queries, or how often users of the search service have
clicked through them to read their underlying content, or how deep they are in the
directory structure of that particular site.

Where static weights are available from some source such as PageRank or HITS, they
can potentially be used to eliminate some of the cost of ranking. For example, suppose
that inverted lists are maintained in decreasing PageRank order. Then a top-r ranking
could be rapidly computed by taking the Boolean intersection of the inverted lists
corresponding to the query terms, terminating as soon as r documents containing all of
the query terms have been found. These would be presented in decreasing PageRank
order. If the user then requests more documents, presumably because the top r are
unsatisfactory, then the system simply computes the top 2r, and discards the first r of
them.

User Feedback. Relevance feedback has been widely explored in the context of infor-
mation retrieval research. In explicit feedback systems, users identify the answers that
are of value (and perhaps others that are not), and this information is incorporated into
a revised query, to improve the overall quality of the ranking. Much of this research
assumes that queries are independent, and, in practical systems, it has proven difficult
to gather relevance assessments from users.

However, in a system processing large numbers of queries, it is straightforward to
identify which answers users choose to view. The action of a user clicking on a link can be
interpreted as a vote for a document. Such voting can be used to alter the static weights
of documents and thus their ordering in the ranking generated for subsequent queries
even if the subsequent queries differ from the one that triggered the click though.

Index Terms. In structured documents, such as those stored as HTML, different em-
phasis can be placed on terms that appear in different parts of the document. For
example, greater weight might be placed on terms that appear in a document’s <title>
tags or as part of an <h1> heading.

Another important difference between Web searching and more general document
retrieval is that the anchor text associated with a link in one page is in many cases
an accurate summary of what the target page is about. Links are usually manually
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inserted, and unless they say “click here”,1 represent a succinct assessment to a human
author as to the content of the target page. Indexing the anchor text as if it were part
of the target page—perhaps even as if it were a title, or heading—can significantly
improve retrieval effectiveness in Web search applications.

Another useful technique in Web searching is indexing the URL string itself. For
example, the page at www.qantas.com shows the word Qantas as an image rather than a
textual title and unless the URL were parsed into terms and indexed with the document,
would risk not being searchable. Page importance can also be biased according to the
length of the URL that accesses it on the assumption that URLs with fewer slashes
lead to more important pages.

Finally, it is worth noting that the <alt> text associated with images is a useful
indication of what the image content is, and indexing of <alt> text is part of the Google
image search mechanism.

Manual Intervention. If some queries are particularly common, then a reasonable strat-
egy for improving perceived performance is to manually alter the behavior of these
queries. For example, it might make sense for the term Quantas to be manually associ-
ated with the Qantas page, given the high incidence of confusion over the exact name. By
the same token, if the query CNN does not lead directly to www.cnn.com as a result of the
ranking heuristic, then direct manipulation to make it so could well be appropriate. One
of the most common queries in the search engine of one of our institutions is the single
word library; sadly, the home page of the library is only the fourteenth highest ranked
answer.

13. BIBLIOGRAPHY

The material presented in the previous sections is based on an extensive literature
spanning more than 40 years. This section provides a high-level critical overview of
that literature and can be regarded as further reading that augments the tutorial.

Our examination of past work is through the prism of current interests rather than
a complete historical study. For example, in the first decades of work on information
retrieval, both Boolean and ranked queries were widely investigated but, in the last
twenty years, most work on search has focused on ranking; the research on Boolean
querying is increasingly of historical interest only and is largely outside our scope. Note,
too, that terminology has changed since the 1980s. In many older papers, retrieval was
taken to mean Boolean matching. Scoring and ranking of matches was often described
as nearest neighbor searching. Some retrieval papers focused on cluster retrieval, an
activity that now receives relatively little attention.

Within the narrow area of inverted file indexing for text, this bibliography is reason-
ably complete. However, some minor papers have been omitted on grounds such as lack
of availability (in particular, technical reports and theses); and, where a preliminary
paper has later been expanded and republished, the preliminary paper is not cited. In
the noncore areas, such as signature files, the bibliography is far from exhaustive. In
these cases, we have focused on papers with innovations in index structures or query
evaluation algorithms.

Some related topics are not considered. We do not explore vocabulary representations
such as hash tables and B-trees or in-memory text search structures such as suffix
arrays; and we do not discuss use of text indexes in other applications or special-purpose

1In late 2005, for the query click hereGoogle returns the Adobe Acrobat Reader home page, the Macromedia
Flash player download page, and the Apple QuickTime download page as the three top-ranked answers
because of the hundreds of thousands of sites that point at the these pages using the anchor text “to obtain
a copy, click here”.
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text indexes such as those used for plagiarism detection. Nor do we discuss structured
document retrieval, or use of inverted files for relations or other data. The purpose of
this bibliography is to review and categorize the literature on free-text indexing and
ranked query evaluation.

Books and Overviews. In contrast to areas such as database systems, there have been
relatively few textbooks on information retrieval or text search. Only three recent books
have substantial coverage of algorithms and data structures for information retrieval,
those by Frakes and Baeza-Yates [1992], Grossman and Frieder [2004], and, in par-
ticular, Witten et al. [1999]. The implementation described in the tutorial is similar to
the methods presented by Witten et al. [1999] and, more briefly, in a chapter of Bertino
et al. [1997]. However, several of the extensions and methods summarized here were
developed since those texts were written.

Baeza-Yates et al. [2002] include an overview of index representation and query
evaluation as well as topics such as string searching, suffix arrays, and issues for dis-
tributed processing. Frakes and Baeza-Yates [1992] and Salton [1968] provide useful
background, but they do not consider current approaches. Faloutsos and Oard [1995]
give an introduction to the field of text searching in a technical report. Arusu et al.
[2001] review text retrieval in the wider context of Web search, including issues such
as distribution and crawling.

There are several older textbooks on information retrieval and retrieval systems
(but with only limited material on indexes and indexing) including Salton [1971, 1981];
Lancaster and Fayen [1973]; van Rijsbergen [1979]; and Salton and McGill [1983]. For
an overview of information retrieval research through approximately 1995, see Sparck
Jones and Willett [1997], an extensive, annotated compilation of many classic infor-
mation retrieval papers. A text from this same era that does consider indexing and
compression—but not ranking—is Heaps [1978] which discusses topics such as im-
plementation issues for search of bibliographic records; in this context, Heaps [1978]
reports that index size is expected to be about 70% of data size. For a general intro-
duction to information retrieval including an overview of indexing, see Baeza-Yates
and Ribeiro-Neto [1999]. Kobayashi and Takeda [2000] review information retrieval
and search on the Web. Voorhees and Harman [2005] is an overview and history of the
TREC project. Zobel et al. [1996] discuss criteria against which an indexing method
might be assessed.

Books that consider relevant compression techniques include Witten et al. [1999],
Moffat and Turpin [2002], Salomon [2000], and Sayood [2000]. Only the first of these
discusses the application of compression to indexing.

Text Search and Information Retrieval. Segesta and Reid-Green [2002] briefly review
a 1953–8 implementation of associative text indexing using punch cards and mag-
netic tape. The indexes were, in modern terms, inverted lists represented as bitmaps;
manual searching was reportedly easier than search via the computer. Ivie [1966] de-
scribes a range of ways similarity computations might be performed, and Matthew and
Thomson [1967] describe a successful implementation of a tape-based inverted index in
which answers are ranked according to user-supplied term importance. Salton [1968]
describes a rich system that makes use of syntactic analysis, thesauri, dictionaries,
and the vector space model to search tapes for matches. Salton [1972] gives reasons
why—with the machines, algorithms, and collections of the time—inverted files are not
always practical. Haskin [1980] reports that “space estimates for storing [an inverted]
index range from 50% to 300% of the space needed to store the text itself”, a quotation
that continues to be used to justify research into alternative indexing methods despite
the fact that it refers to a primitive form of inverted file with storage of redundant
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information and no compression. The 50%–300% figure is originally due to Bird et al.
[1978] who report that the inverted file sizes of a range of then current systems “range
in size from .5 to 3 times the size” of the indexed data. The exact structure of the in-
verted indexes in these systems is not given, but each posting appears to contain a
search key. Thus this widely-cited figure is based on structures quite different from
inverted files as understood today.

Bird et al. [1978] also report the cost of a search on a full-text database: typically
$20 to $30 per query, and sometimes as high as $100. Assuming 2005 commodity hard-
ware pricing; a cost multiple of ten to allow for data gathering, software purchases, and
maintenance; and (very conservatively) one second per search; then a typical query
today might cost 0.03 cents, around 100,000 times less. That is, on average the cost has
halved every eighteen months, not even taking into account that the volume of data
being searched has probably grown by a factor of 1,000 or more during the same pe-
riod, while the cost of accessing disk, then as now a key bottleneck in query processing,
has fallen by a factor of no more than 100. Bird et al. [1977] state that “it has become
obvious to many [researchers in the] text retrieval disciplines that new hardware de-
vices are needed; continued reliance on software ingenuity will probably not produce
a spectacular breakthrough”. The gains of the last three decades have not confirmed
their pessimistic assessment.

Harper [1982] tested four commercial systems (ASSASSIN, BASIS, STAIRS, and
STATUS) and notes that all use a form of inverted file; for the 62MB collection
used in the experiments, the block-oriented index of STATUS was estimated to re-
quire around 45MB. A categorization and partial bibliography of pre-1983 papers
on indexing and search is given by Eastman [1983]; this paper demonstrates that
a wide range of indexing methods were under consideration at the time. A corre-
sponding survey by Faloutsos [1985a] also considers a range of techniques. Faloutsos
[1985a] reports that inversion is “adopted in most of the commercial systems”, but
has significant disadvantages, and that, “for the office environment”, the signature
method is the most promising. These conclusions have been invalidated by subsequent
work.

Cluster retrieval was another alternative that is now little investigated. In some older
textbooks, cluster searching is regarded as the most promising technique for search.
However, Voorhees [1986] compared cluster and inverted file search and found that
inverted file search is more efficient. Salton [1989] wrote that “inverted-file search is
substantially faster . . . it is likely that inverted file searches will always remain faster
than cluster searches, no matter how refined a cluster organization is available”. Can
[1994] proposed a combination of cluster search and inverted file search, arguing that it
is advantageous to organize inverted list entries by cluster, but interest in cluster-based
searching has greatly declined since the 1980s; there is little evidence that clustering
provides a viable alternative to inverted indexes.

Early work on inverted files for text used methods developed for databases such as
that of Bayer and McCreight [1972], Cardenas [1975], and McDonell [1977]. In these
approaches, the cost of update was a key concern, leading to representations of inverted
lists in sequences of blocks. The focus on reducing update costs thus led to increased
space consumption and slower query evaluation. Stellhorn [1977] considered inverted
files designed for text, arguing for the use of special-purpose hardware to allow rapid
merging; the arguments do not apply to current systems.

Much of the work on inverted indexes assumes that lists are directly managed via
a file system, an approach that allows control over fragmentation and use of special-
purpose free-space management algorithms. Zobel et al. [1993b] consider layout of lists
on disk and management of short lists with blocks, showing that their hybrid approach
can lead to low fragmentation.
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Alternatively, relational database systems can be used as file systems, for example,
an inverted list can be stored as a contiguous blob in a record. Such an approach is
explored by, among others, Brown et al. [1994], Melnik et al. [2001], and Vasanthakumar
et al. [1996], who show that it simplifies implementation. There are costs, however; in
addition to the extra layer of management that is introduced by use of a database system
for file management, this organization removes flexibility such as the ability to retrieve
lists in stages and to ensure contiguous storage. Grabs et al. [2001] consider whether a
distributed relational database provides advantages for information retrieval compared
to a monolithic relational database, but the generality of the results is unclear due to
use of a collection that fits in memory and lack of explanation of query evaluation
techniques. The potential advantages during update are considered by Brown et al.
[1994], but this method assumes segmentation of lists into 8-kilobyte blocks and does
not allow efficient query processing.

Standard relational indexing techniques are an alternative to indexes designed for
text. Numerous approaches of this kind have been described in which an inverted list
for a term is represented typically by a series of tuples, one per document containing the
term. Such implementations are orders of magnitude slower than text-specific designs,
and we do not explore this literature of unsuccessful methods. Also, there have been
many descriptions of special-purpose implementations; most of these are of at best
limited interest.

Similarity Measures. Improvement in similarity measurement is a key aim of informa-
tion retrieval research and, over the years, has been the subject of hundreds of papers
in the annual SIGIR Information Retrieval Conference. A survey of even the principal
contributions is beyond the scope of this article, and we simply note a small number of
key papers.

The most effective similarity formulations have been based on models of documents,
queries, and the retrieval process. One such approach is the vector space model, formally
explained by Salton et al. [1975] but in use much earlier. The first reference to the cosine
measure that we know of is by Salton [1962] who considers “the vectors of document
properties as vectors in m-space, and [takes] as a distance function the cosine of the
angle between each vector pair”.2 Other early work is by Ivie [1966] who also considered
similarity functions.

The cosine measure—which has consistently been the most successful similarity mea-
sure described under the vector space model—has undergone continuing refinement,
in particular with regard to term weighting. Arguably, the most recent significant in-
novation was the introduction of document-length pivoting [Singhal et al. 1996] which
addresses the issue that document length and likelihood of relevance are correlated. A
range of other extensions of this type, for instance, introduction of a tunable constant
through the use of training data, have followed.

For much of the history of information retrieval, the principal alternative to the
vector space model has been probabilistic models. Statistical approaches to information
retrieval were articulated during the early days of document computing; for example,
Luhn [1957] wrote that

a standard program could serve to direct the machine to compare the question [with] the documents

of the collection. Since an identical match is highly improbable, this process would be carried out on a

statistical basis by asking for a given degree of similarity.

2We thank Michael Lesk for locating and forwarding to us this key early information. Also worth noting
is that the Salton Award, presented every three years for research in the area of information retrieval, is
named after Gerard Salton [1927–1995], the pioneering researcher who penned this statement.
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The probabilistic model’s basis is the probability ranking principle, explored by Maron
and Kuhns [1960] and later formalized by Robertson [1977]. Similarly, Edmundson and
Wyllys [1961] wrote:

In preparation for the widespread use of automatic scanners which will read documents and transmit

their contents to other machines for analysis, this report presents a new concept in automatic analysis:

the relative-frequency approach to measuring the significance of words, word groups, and sentences.

Many of the underpinnings of probabilistic information retrieval are summarized by
Sparck Jones et al. [2000] who give a detailed derivation of the probabilistic similarity
measure often referred to as the Okapi measure or BM25 [Robertson et al. 1994].

A recent innovation is the use of language models, introduced by Ponte and Croft
[1998], where similarity is based on the kinds of word probability estimates used in
statistical modeling [Manning and Schütze 1999] and text compression [Bell et al.
1990]. Many of the key issues in language models are examined in the papers collected
by Croft and Lafferty [2003]. Language modeling is an active area of research.

We are aware of no recent surveys or overviews of similarity measurement. Harman
[1992] lists a range of similarity measures. Salton and Buckley [1988b] surveyed differ-
ent retrieval mechanisms and introduced notation to describe them; Zobel and Moffat
[1998] combined a range of measures into an orthogonal framework and compared them
on several different test collections.

Phrase Querying. An aspect of query evaluation that has attracted only a little pub-
lished research is the algorithmic problem of ranking with phrases. Lee et al. [1996]
compare inverted files and signature files for keyword-based retrieval of structured
documents. Williams et al. [1999] describe an index organization for word pairs, allow-
ing phrase queries of arbitrary length. Williams et al. [2004] show that a small, partial
phrase index can be used in conjunction with a conventional index and a phrase cache
to achieve most of the speed gains attained by explicit word-pair indexes at much lower
space overhead.

Index Construction. Although the problem of index construction for text search has
similarities to both standard index construction and external sorting, there are partic-
ular features of text indexes that mean that special-purpose algorithms can be more
efficient than a general-purpose algorithm.

There are several alternative approaches [Witten et al. 1999, Chapter 5]. Fox and Lee
[1991] proposes a two-pass method in which the index is structured during one pass
through the data and constructed during multiple second passes. This method requires
little overhead space but substantial overhead time for the repeated passes over the
data.

Many authors, well into the 1990s, appear to have assumed that indexes would be
constructed with the methods used for relational databases. Others assumed that an
index should be built by generating tuples representing list entries in occurrence or-
der and sorting them into term order. Harman and Candela [1990] and Rogers et al.
[1995] explored a method based on writing temporary list entries to disk which, while
faster than the simplistic sorting methods, is still impractical. Moffat [1992] describes a
scheme that assumes that the entire compressed index can fit into main memory. Moffat
and Bell [1995] describe a process that makes use of all of compression, in-place on-disk
sorting, and one-pass processing to build a compressed index within only a moderate
amount of memory in excess of that required by the vocabulary. Heinz and Zobel [2003]
experimentally examine several techniques and demonstrate that a straightforward ap-
proach based on building and merging runs in limited memory is, in practice, the most
efficient.
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Index Maintenance. Cutting and Pedersen’s [1990] work was one of the first exami-
nations of the particular problems posed by update of text indexes, including sequen-
tial management of list entries, and makes practical recommendations that are still
relevant such as the need to make updates in batches rather than term-at-a-time or
document-at-a-time. Brown et al. [1994], as noted earlier, use a relational system to
manage list entries as they are incrementally modified. Motzkin [1994] describes a
method based on storing list entries in a B-tree, giving analytical results, but the
small blocks of list entries that result are likely to lead to inefficient query evaluation.
Burkowski [1990] considers the problem of free-space management in the context of an
index organized for fast updates; while the issues raised are interesting, the solution
is inapplicable to current implementations of indexing.

Lester et al. [2006] experimentally compare different approaches to update, finding
that, for large numbers of new documents, in-place update is costly compared to merging
old and new indexes. Tomasic et al. [1994] and Shoens et al. [1994] evaluate incremental
update strategies on synthetic data, considering a range of approaches to management
of space allocation and free lists. Clarke et al. [1994] and Clarke and Cormack [1995]
consider the costs of batch update strategies in the context of a method for updating in
stages. Lester et al. [2005] and, in a case of independent discovery, Büttcher and Clarke
[2005] describe the intermittent merging approach in which the index is partitioned into
a sequence of fragments of increasing size. This strategy reduces both the underlying
complexity and the in-practice costs.

Barbará et al. [1996] consider caching strategies for reducing the costs of updates and
queries, arguing afresh that buffering of updates is likely to significantly reduce costs.
Much of the paper considers locking strategies, an operation that is neglected (or viewed
as unnecessary) in many text retrieval applications. Shieh and Chung [2005] propose
an over-allocation strategy designed to balance space wastage against the cost of too-
frequent list relocation. The results in this paper and others indicate that some form
of over-allocation is essential. Lim et al. [2003] reconsider an assumption widely made
in older work, that document update or deletion is rare, noting that this assumption is
false for Web data. Using a simple index representation, they show that update costs
can be reduced through use of structured rather than ordinal word positions.

Distributed Information Retrieval. There is a wide literature on distributed information
retrieval. Many of the papers in this area concern topics such as database selection and
result fusion rather than index structures or algorithms for query evaluation. However,
there are numerous exceptions. Most of the algorithm-oriented papers on distributed
information retrieval concern proposals for specific architectures and measurement or
estimation of efficiency under the architecture.

Stanfill et al. [1989, 1999] describe how an index might be distributed among a
large number of tightly coupled low-power parallel processors. The underlying index
design is relatively simplistic, and it is not clear that the predicted speedup, based on
extrapolating to collections thousands of times larger than those tested, could have
been achieved in practice. Cringean et al. [1990] explore similar issues with simi-
lar limitations in a transputer network. A related design was explored by Reddaway
[1991]. Salton and Buckley [1988a] critically evaluate these approaches. Couvreur et al.
[1994] compare the suitability of different index types (inverted files, signature files,
and special-purpose hardware) for parallel text search for both Boolean and wildcard
queries.

Harman et al. [1991] describe an implementation based on document distribution
across servers with separate collections, used as a library information system. This
system was successfully used in practice. Macleod et al. [1987] use simulation to com-
pare approaches to distribution, including having documents on one server and the
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index on another, as well as the more usual approaches to division of workload via
partitioning and replication. They found distribution to be advantageous but under as-
sumptions that do not correspond to current systems such as low workload and Boolean
querying. Martin et al. [1990] found via simulation that caching of material at client
or server can improve performance. Again, many of the assumptions are not applica-
ble to current systems, but one key finding—explicit caching is superior to relying on
the operating system’s caching—remains valid. Martin and Russell [1991], however,
question whether client-side caching is of value.

Cahoon and McKinley [1996] and Cahoon et al. [2000] describe a distributed system
built on the Inquery server, showing (primarily by simulation) that distributing doc-
uments among servers can improve response until the client becomes choked. Large
gains in performance were obtained by reducing the numbers of answers required. Lu
and McKinley [2003] report substantial further gains with carefully targeted replica-
tion, an alternative or enhancement to caching in distributed systems.

Riberto-Neto et al. [1999] explore alternative ways of building a term-distributed
static index in a distributed environment, showing that it is best to distribute inverted
lists during construction of runs. This means that the vocabulary distribution must be
known in advance.

Barroso et al. [2003] provide an overview of the Google architecture. In this system,
the index is distributed document-wise among several servers, giving a server clus-
ter. Documents are stored on separate machines. An alternative document-distributed
architecture is explored by Hawking [1997] with experiments showing that it scales
well. Another document-distributed architecture is explored by Melnik et al. [2001].
de Kretser et al. [1998] outline how queries on a document-distributed system might
be evaluated, considering communication costs and correspondence to a monolithic sys-
tem, arguing that a key optimization is to minimize the number of handshakes between
clients and servers.

Xi et al. [2002a, 2002b] describe an approach in which each node contains a fixed frac-
tion of each inverted list. Whether this approach is in practice significantly different to
document distribution is unclear; their experiments indicated small improvements over
a short sequence of queries and used the assumption that lists have to be completely
processed during query evaluation.

Jeong and Omiecinski [1995] compare document distribution to term distribution,
finding experimentally (but on artificial data) that document distribution is likely to be
superior in practice. MacFarlane et al. [2000], using a large data set, a small number
of real queries, and a single serialized client, fount that document partitioning is supe-
rior. Tomasic and Garcı́a-Molina [1993] compare distributed index organizations, using
simulation, and found that document distribution is superior to term distribution for
Boolean queries. Tomasic and Garcı́a-Molina [1996] undertook a similar investigation,
using bibliographic records instead of full-text documents, and found that distribution
without replication is unhelpful. Ribeiro-Neto and Barbosa [1998] compare term and
document distribution with simulations and found that term distribution is likely to
outperform document distribution. Badue et al. [2001] compare the same approaches,
finding experimentally with artificial queries that term distribution is clearly superior.
Cacheda et al. [2004] compare distribution with replication, finding the latter to be
more efficient, using simulation, artificial queries, and extrapolation; due to simplify-
ing assumptions such as that the servers are memoryless, the results are unrealistic.
However, this is an active area of research; at the moment there is no clear best de-
sign, and choices between approaches depend on a range of machine and application
specifics.

More recently, Moffa et al. [2005] describe a term-oriented system in which partial
answers are transferred between servers rather than inverted lists. Their results show
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that the revised method is competitive with document distribution in terms of query
throughput but has problems with load balancing and is thus not as scalable.

The contrasts between these many papers highlight the difficulties in experimental
or simulated work of this kind: high throughput can be achieved at the expense of
poor response time to individual queries; caching of inverted lists and answer sets
affects different architectures in different ways; if indexes are smaller than available
memory, timings may be highly unrealistic; the relative importance of the component
costs changes dramatically with the volume of data to be indexed; and artificial queries
are likely to be unrealistic. These kinds of problems lead to question marks over much
of this work. In some papers, for example, it is assumed that the distribution of query
terms is the same as that of document terms, leading to the conclusion that long lists
must be processed in full for typical queries. Failure to model caching effects leads to
drastic inaccuracies; experiments with small numbers of queries, even if realistic, say
little about behavior with large numbers of queries where repetition is observed.

Comparisons are meaningful only if both implementations are of high quality or if,
improbably, in our view, simulations are fully realistic without simplifying assumptions.
Moffat and Zobel [2004] comment on some of these issues.

Efficient Index Representations. The majority of the representations used in index com-
pression are based on integer coding methods, in particular those of Golomb [1966],
Gallager and Van Voorhis [1975], Elias [1975], and Rice [1979].

Early approaches to index compression were based on interpreting inverted lists as
bitmaps. (Most of these schemes did not consider in-document frequencies but, in hind-
sight, incorporation of these frequencies would be straightforward.) Jakobsson [1978]
gives a compression method based on interpreting bit-vectors as sequences of k-bit
symbols each of which can be allocated a Huffman code. Fraenkel and Klein [1985]
explore variants of this scheme. Bookstein and Klein [1992] and Choueka et al. [1986]
describe a refinement in which an initial index is used to eliminate blocks in which
all bits are zero. All of these schemes, at best, simply approximate the Golomb code
and its excellent behavior when the appearances of each term are random in the set
of documents. Other refinements are described by Bookstein and Klein [1991a, 1991b,
1991c].

Schuegraf [1976] described another variant based on bitmap compression, using anal-
ysis, to demonstrate that, in principle, large savings were available. However, it is not
clear that this method is significantly different from the other bitmap-based approaches
discussed previously.

Choueka et al. [1987] extended the bitmap approach to allow determination of
whether words occur in proximity to each other. Compression of a word-level index
is explored by Choueka et al. [1988], using a range of purpose-designed representa-
tions for tuples representing word positions. Some of the later methods can be viewed
as generalizations, with greater compression effectiveness, of this approach. Klein et al.
[1989] briefly outline an organization for an inverted index based on these tuples in
which word positions are described as coordinates of document, paragraph, and sen-
tence number in a static database, allowing space savings compared to an uncompressed
representation.

Prior to much of this work, Teuhola [1978] proposed use of Golomb-like codes for
compressing bit vectors, a principled approach that achieves better compression than
many of the alternatives described since.

The compressed index representation outlined in Section 8 was developed in a se-
quence of papers in the early 1990s [Witten et al. 1991, Moffat and Zobel 1992a, 1992b;
Zobal et al. 1992; Bell et al. 1993]. Refinements cover including additional structure
to accelerate processing [Moffat and Zobel 1996; Anh and Moffat 1998]; exploiting any
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clustering that may be available [Moffat and Stuiver 2000; Blandford and Blelloch 2002;
Silvestri et al. 2004]; exploration of bytewise codes [Williams and Zobel 1999; Scholer
et al. 2002; Brisaboa et al. 2003; Culpepper and Moffat 2005]; exploration of fixed binary
codes [Anh and Moffat 2005]; suppression of unimportant index information [Carmel
et al. 2001]; and experimental comparison of alternative representations [Scholer et al.
2002; Trotman 2003]. Much of the current research in the area of efficient indexing and
query evaluation is based on these papers.

Linoff and Stanfill [1993] describe an approach based on bitwise codes that, in the best
case, are equivalent to an Elias gamma code. The compression achieved is poor. Shieh
et al. [2003] propose reorganization of lists into trees to allow fast Boolean and ranked
querying. It seems unlikely that this approach is practical as the reorganization appears
to introduce large numbers of pointers. Use of Bayesian models is explored by Bookstein
et al. [2000]; the results, on common terms in small collections, are not comparable to
those in other work. Shieh et al. [2003] describe a similarity-based reordering of the
stored documents to reduce median gap values and thus improve compression with
Elias codes. Such techniques may be of value for static collections.

Faloutsos and Jagadish [1992] analyze search and construction times for an uncom-
pressed index that is a mix of inverted lists and bitmaps (without word frequencies), and
consider practical issues such as bitmap update. Such methods are superseded by the
implementation described in the tutorial, as a posting list with Elias or Golomb coding
is almost always shorter than the corresponding bitmap regardless of term frequency.

Limiting Memory Requirements. Early implementations of ranked query evaluation
assumed an array of accumulators, one for each document in the collection, as ex-
plained, for example, by Buckley and Lewit [1985]. Perry and Willett [1983] survey
ranking methods based on inverted files. They report that, prior to about 1980, while
some papers described systems that directly ranked documents, the “great majority
of . . . interactive document retrieval services are based on partial match, Boolean search
procedures” [Perry and Willett 1983]. Noreault et al. [1977] showed that inverted files
can be used to support ranking with only slightly increased costs compared to Boolean
querying.

For a query of many terms, a key optimization to standard ranking methods is to
avoid processing of inverted lists corresponding to words of low weight. Smeaton and
van Rijsbergen [1981] and Buckley and Lewit [1985] describe early schemes of this kind,
using term statistics to determine when the set of top documents cannot be altered by
further index processing (though their order might change). Lucarella [1988] and Wong
and Lee [1993] describe further variants to these schemes. For short queries, however,
these approaches cannot be effective, and the overhead of dynamically maintaining
the necessary statistics during query evaluation is high. Perhaps most seriously, as
collection size grows, the difference in score between highly-ranked documents becomes
small, and the termination condition is unlikely to be met until it is too late to achieve
significant savings.

An alternative stopping condition was described by Moffat and Zobel [1996]. In this
approach, the total number of accumulators was fixed. Only the document identifiers
corresponding to the first inverted lists processed could be included. Once the limit in
the number of accumulators is reached, query processing can stop—giving the final set
of documents, but possibly in a poor order—or can continue, updating existing accumu-
lators but not adding new ones. Persin et al. [1996] described a thresholding method
for throttling the number of accumulators created, without specifying a precise limit.
The impact-sorted indexes of Anh et al. [2001] and Anh and Moffat [2002] also sup-
port early query termination, trading effectiveness for efficiency. Lester et al. [2005]
described a thresholding method designed for Web-style queries where accumulators

ACM Computing Surveys, Vol. 38, No. 2, Article 6, Publication date: July 2006.



Inverted Files for Text Search Engines 45

are both created and discarded as each list is processed. With the growth in the size
of typical collections, all practical implementations now use some method for limiting
numbers of accumulators.

In uncompressed inverted lists, a common assumption in work on query evaluation
prior to 1993 or so, the document weights could be incorporated into the inverted lists.
With the compression methods described in the early 1990s, it was much cheaper to
store frequencies (which are small integers, whereas normalized frequencies are float-
ing point numbers drawn from a large domain). Moffat et al. [1994] showed that doc-
ument weights could be stored in a few bits each; the accuracy of, for instance, 32 bits
is unnecessary given the existing approximations inherent in ranking. As the array of
document weights needs to be randomly accessed, this can greatly reduce the memory
required for a search engine.

Turtle and Flood [1995] argue that document-ordered query processing in which
lists are merged rather than processed in turn in term-ordered query processing, may
be more efficient in practical multiuser environments. Kaszkiel et al. [1999] compare
term-ordered and document-ordered processing for whole documents and for passages
and find that document-ordered processing can be effective if some query terms are
rare. However, the distinction between the methods is unclear in the context of limited
numbers of accumulators. Strohman et al. [2005] carry out further experiments with a
document-ordered processing regime.

A space-saving approach is to trade off index-processing cost against document-
retrieval cost. Signature files exemplify this technique. As the amount of information
held about each document is reduced, the likelihood of fetching a document by mistake
grows. In such an approach, it is necessary to postprocess documents to ensure that
they do in fact match the query—a cost that in a large collection must easily dominate
all other components of query processing. Other approaches of this kind were proposed
by Manber and Wu [1994], Baeza-Yates and Navarro [2000], and Navarro et al. [2000]
in which words are indexed by approximate location, such as a group of documents,
which, after index processing, could then be exhaustively processed.

A radically different approach to query evaluation is described by de Kretser and
Moffat [1999], Clarke and Cormack [2000], and Clarke et al. [2000]. In this approach,
word positions are stored in inverted lists and documents are ranked according to
the proximity of the query terms: a document that has a region that is dense with
query terms is highly ranked. This approach can be very effective, particularly on long
or poorly defined documents. Passage retrieval, in which the document collection is
broken into fixed-size passages for the purpose of similarity checking, has also had
some success [Kaszkiel et al. 1999; Zobel et al. 1995].

Reducing Retrieval Costs. Perhaps the single most effective heuristic for reducing query
evaluation costs is to reorder inverted lists according to frequency or contribution.
Until the mid-1990s, most of the query evaluation schemes were based either on the
assumption that inverted lists were sorted by document identifier, or made no use of an
ordering assumption at all. Wong and Lee [1993] describe a scheme in which lists are
sorted by decreasing frequency. This initial description of the approach was marred by
the assumption that inverted lists would consist of short blocks of document identifiers
(leading to high retrieval costs) but allowed interleaved processing of inverted lists. It
is the first description of this sorting principle which gives substantial savings.

Persin et al. [1996] proposed that inverted lists be sorted by in-document frequency.
As in the method described by Wong and Lee [1993], query evaluation then processes
the front part of each inverted list; how much is processed is determined by parameters
reflecting system load and memory availability. A practical refinement to this approach
was proposed by Brown [1995] who suggested that, for each list of sufficient length,
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the list begin with a fixed-length block of document identifiers in which the term is
frequent. An alternative is to store normalized frequencies in the inverted lists as
described by Hawking [1998], Anh et al. [2001], and Anh and Moffat [2002]. To avoid
loss of compression efficiency in this impact-ordering approach, the resulting absolute
term weights are quantized. Large efficiency gains can be obtained through this method
which is also suitable for evaluating queries within a fixed time bound.

Carmel et al. [2001] propose the static pruning of inverted lists, discarding at index
construction time entries that are heuristically judged to be unlikely to affect rank-
ing. While successful at reducing index size, the method is less effective and less ef-
ficient than the dynamic pruning methods. Garcia et al. [2004] describe another or-
dering variant where, within each inverted list, documents are ordered according to
the number of times the document is highly ranked by a training query. The savings
yielded are not as high as for impact-ordering and large numbers of training queries are
required.

Caching reduces the cost of accessing disk. The impact of answer and list caches is
explored by Saraiva et al. [2001] who use a large collection and a query log to show
that both kinds of cache contribute to dramatically improved throughput. Lempel and
Moran [2005] give theoretical bounds for the benefits of caching. Technical aspects of
cache implementation are considered by Shieh et al. [2003] who show that, unsurpris-
ingly, the costs of running a retrieval system can be significantly reduced by the use
of caches; experiments with simulated queries are used to compare caching schemes,
but the results (which depend on query distribution, a small collection, and specific
hardware) seem unlikely to generalize. Jónsson et al. [1998] show that cache replace-
ment policy has a significant effect on performance, while Lempel and Moran [2004]
demonstrate efficiency gains (in the context of a distributed system) by prefetching and
anticipating events such as users proceeding to the next page of answers. In this con-
text, as illustrated by the work of Spink et al. [2001] and Spink and Xu [2000] on query
logs, even though query evaluation can in principle focus on the rarest of the query
terms provided, terms in typical queries occur in up to 1% of the indexed documents.
Thus the inverted lists of query terms can be expected to be at least a megabyte in
a large text collection and caching is likely to lead to significant savings. Lempel and
Moran [2003] consider answer caching strategies in practice, using a trace of seven
million real-life queries from a search engine log.

Web Searching. Brin and Page [1998] describe the PageRank mechanism, in effect a
query-independent similarity measure, that led them to develop the first version of
the Google search engine. Other aspects of the Google search engine are presented by
Barroso et al. [2003]. The HITS algorithm is due to Kleinberg [1999].

Other simpler metrics for assigning static weights to pages include counting the in-
degree and the out-degree of pages and various techniques based on statistics of the
page, for example, the ratio of normal text to other content. Many of the weighting fac-
tors used by commercial search engines are proprietary and the subject of considerable
speculation on the part of both consumers of the services they provide and also the
spammers who seek to manipulate those services.

Other Approaches to Indexing. There are many papers on exhaustive string search but
only de Kretser and Moffat [2004] consider how to rank exhaustively. Suffix arrays can
be used for a wide range of searching tasks, including the Boolean retrieval more usually
undertaken using inverted files. Baeza-Yates and Ribeiro-Neto [1999] and Baeza-Yates
et al. [2002] provide an introduction to the literature in the area. Note that suffix arrays
provide exact-match searching; there is no concept of ranking or of similarity scoring.
On the other hand, some of the flexibility of string searching can be achieved if the
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vocabulary, rather than the underlying set of documents, is searched for possible query
terms [Zobel et al. 1993a]

There is a wide literature on signature files, dating back to the 1970s. Many of the
papers in the area are principally concerned with the organization of the files and
do not consider (at least, not in significant detail) how they would be applied to the
problem of Boolean or ranked text search. Only a few papers concern the problem of
ranking using signature file indexes, in particular Croft and Savino [1988] and Lee
et al. [1995]. The schemes described in these papers are not competitive with inverted
file implementations.

Zobel et al. [1998] give a detailed comparison of inverted files and signature files.
Using analysis and experiments with data sets of under a gigabyte, it was concluded
that signature files were highly inefficient as a Boolean retrieval mechanism for text.
Since that time, the size of typical collections has greatly increased; extrapolation of the
cost components of those experiments suggests that, for today’s collections, signature
files are relatively even less efficient. When inverted files can find matches in 100GB in
less than a tenth of a second, there is little reason to use a signature file that requires
seconds to search a gigabyte. Prior to the investigation of Zobel et al. [1998], Couvreur
et al. [1994] compared inverted files to signature files in the context of a parallel system
and found signature files to be lacking.

A focus of signature file research has been methods for rearranging signatures to
reduce costs. Most of these methods propose, in effect, division of the file to reduce the
length of bit vectors by a fixed ratio. Under these schemes, typically, the cost of query
resolution remains linear to collection size, and there is no amelioration of the problem
of false matches. Examples include work by Bookstein and Klein [1990], Ciaccia et al.
[1996], Kocberbera and Can [1997], Kent et al. [1990], and Zezula et al. [1991]. It is not
clear that any of these schemes are of value in practice. For example, Kocberbera and
Can [1997] note a problem with scaling and removed the longest documents in order to
reduce false matches to predicted levels.

A problem in much of the signature file work is the assumption of the independent
probability of a bit being set. See, for example, Faloutsos [1985a, 1985b] who analyzes
false drop probabilities on this assumption for different signature approaches; see also
Ciaccia and Zezula [1993] and Lee and Leng [1989]. Sacks-Davis et al. [1987], in con-
trast, explicitly relate the probability of a bit being set to word probabilities, while
continuing to assume that documents contain a fixed number of words.

Nothing Is Truly New. We close our article with a salutary quote, drawn from an article
also published in ACM Computing Surveys [Severance and Carlis 1977]:

When compared to a sequentially organized database, all [of] the preceding [variant index] organizations

have several disadvantages: the software required for retrieval is much more complex; file retrieval

generally requires at least one secondary memory access for each record retrieved; the space occupied by

pointers constitutes a storage overhead (typically, 10% to 70% of total space requirements); and finally,

the management and maintenance of data for a large set of lists represent a second-order database

design problem whose solution will critically affect the total system’s performance. Nevertheless, when

rapid retrieval of small subsets of records from a large database is an essential system requirement, one

of these file structures must be employed. The inverted list structure is generally preferred.

Current research directions in inverted files often relate to evaluation methods for
the innovative similarity metrics that continue to appear. However, the core principles
have become well established. Efficient ranking requires compact inverted lists, lim-
ited accumulators, effective pruning strategies, and distribution. In combination, these
techniques allow ranking to be applied to collections of any likely size or characteristics.
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BEAULIEU, M., BAEZA-YATES, R., MYAENG, S. H., AND JÄRVELIN, K., EDS. 2002. Proceedings of the 25th An-
nual International ACM SIGIR Conf. on Research and Development in Information Retrieval. Tampere,
Finland, ACM Press.

BELL, T. C., CLEARY, J. G., AND WITTEN, I. H. 1990. Text Compression. Prentice-Hall, Englewood Cliffs, NJ.

BELL, T. C., MOFFAT, A., NEVILL-MANNING, C. G., WITTEN, I. H., AND ZOBEL, J. 1993. Data compression in
full-text retrieval systems. J. Amer. Soc. Inform. Science 44, 9 (Oct.), 508–531.

BERTINO, E., OOI, B. C., SACKS-DAVIS, R., TAN, K.-L., ZOBEL, J., SHIDLOVSKY, B., AND CATANIA, B. 1997. Indexing
Techniques for Advanced Database Systems. Kluwer Academic Publishers, Boston, MA.

BIRD, R. M., NEWSBAUM, J. B., AND TREFFTZS, J. L. 1978. Text file inversion: An evaluation. In Proceedings
of the 4th Workshop on Computer Architecture for Non-Numeric Processing. Blue Mountain Lake, NY,
ACM Press, 42–50.

BIRD, R. M., TU, J. C., AND WORTHY, R. M. 1977. Associative/parallel processors for searching very large
textual data bases. In Proceedings of the 3rd Non-Numeric Workshop. Syracuse, NY, ACM Press, 8–
16.

BLANDFORD, D. AND BLELLOCH, G. 2002. Index compression through document reordering. In Proceedings of
the IEEE Data Compression Conference, Snowbird, UT, J. A. Storer and M. Cohn, Eds. IEEE Computer
Society Press, Los Alamitos, CA. 342–351.

BOOKSTEIN, A. AND KLEIN, S. T. 1990. Using bitmaps for medium sized information retrieval systems. Inform.
Proces. Manag. 26, 525–533.

BOOKSTEIN, A. AND KLEIN, S. T. 1991a. Compression of correlated bit-vectors. Inform. Syst. 16, 4, 387–
400.

ACM Computing Surveys, Vol. 38, No. 2, Article 6, Publication date: July 2006.



Inverted Files for Text Search Engines 49

BOOKSTEIN, A. AND KLEIN, S. T. 1991b. Flexible compression for bitmap sets. In Proceedings of the IEEE Data
Compression Conference, Snowbird, UT, J. Storer and M. Cohn, Eds. IEEE Computer Society Press, Los
Alamitos, CA. 402–410.

BOOKSTEIN, A. AND KLEIN, S. T. 1991c. Generative models for bitmap sets with compression applications. In
Proceedings of the 14th Annual International ACM SIGIR Conference on Research and Development in
Information Retrieval, Chicago, IL. A. Bookstein, Y. Chiaramella, G. Salton, and V. V. Raghavan, Eds.
ACM Press, 63–71.

BOOKSTEIN, A. AND KLEIN, S. T. 1992. Models of bitmap generation: A systematic approach to bitmap com-
pression. Inform. Proc. Manag. 28, 6, 735–748.

BOOKSTEIN, A., KLEIN, S. T., AND RAITA, T. 2000. Simple Bayesian model for bitmap compression. Kluwer Int.
J. Inform. Retriev. 1, 4, 315–328.

BRIN, S. AND PAGE, L. 1998. The anatomy of a large-scale hypertextual Web search engine. Comput. Netw.
ISDN Syst. 30, 1–7, 107–117.
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